
Budget-Constrained Bulk Data Transfer
via Internet and Shipping Networks

∗

Brian Cho and Indranil Gupta
Department of Computer Science

University of Illinois at Urbana-Champaign

{bcho2, indy}@illinois.edu

ABSTRACT

Cloud collaborators wish to combine large amounts of data,
in the order of TBs, from multiple distributed locations to
a single datacenter. Such groups are faced with the chal-
lenge of reducing the latency of the transfer, without in-
curring excessive dollar costs. Our Pandora system is an
autonomic system that creates data transfer plans that can
satisfy latency and cost needs, by considering transferring
the data through both Internet and disk shipments. Solving
the planning problem is a critical step towards a truly auto-
nomic bulk data transfer service. In this paper, we develop
techniques to create an optimal transfer plan that minimizes
transfer latency subject to a budget constraint. To systemat-
ically explore the solution space, we develop efficient binary
search methods that find the optimal shipment transfer plan.
Our experimental evaluation, driven by Internet bandwidth
traces and actual shipment costs queried from FedEx web
services, shows that these techniques work well on diverse,
realistic networks.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks

General Terms

Algorithms

Keywords

cloud computing, wide-area data transfer, data-intensive com-
puting

∗This research was supported in part by NSF grants CCF
0964471 and IIS 0841765.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

1. INTRODUCTION
Cloud computing has the potential to allow groups of col-

laborators to collect datasets and run computations in an ad-
hoc manner. However, a significant obstacle to such collabo-
ration is the high cost and long latency involved in exchang-
ing large datasets from distributed locations. Paying for
high bandwidth links can be expensive for cloud providers,
which is passed on to the user as data transfer rates. In
addition, with current Internet bandwidths, sending large
datasets is excessively time consuming. For example, send-
ing a 1 TB forensics dataset from Boston to the Amazon
S3 storage system cost $100 and took several weeks [11].1

To remedy this problem, we have previously proposed the
broad approach of transferring data according to a coopera-
tive transfer plan using both the Internet and disks shipped
in packages [7]. To make up for a lack of sufficient Internet
bandwidth, collaborators have the option of moving their
data into disks, and sending them as packages through a
shipment service provider (e.g. UPS or FedEx).

We are developing a system called Pandora (People and
Networks Moving Data Around) which automates the cre-
ation of cooperative transfer plans: information is gathered
about available Internet and shipment links, and this data
is used as input to algorithms that solve for optimal data
transfer plans. A preliminary version of the Pandora service
is at http://hillary.cs.uiuc.edu. This is the most criti-
cal step towards the vision of an end-to-end autonomic Pan-
dora service that not only plans, but executes, e.g. initiates
data transfers across sites, and manages, e.g. tracks ship-
ments through web services, the entire data transfer process.
The planning component collects Internet and shipment link
information through bandwidth measurements [25] and by
querying shipment service provider Web Services [3, 5]. Cloud
collaborators supply parameters (e.g. data size and loca-
tion) and constraints for a transfer, and Pandora processes
this information to produce an optimal transfer plan using
novel algorithms. Previously in [7] we developed algorithms
for finding a transfer plan that obeys a latency deadline con-
straint, while minimizing the dollar cost of transferring the
data.

In this paper, we solve the new problem of finding the
fastest transfer plan given a strict constraint on the dollar
cost budget. This budget-constrained problem requires new
solution techniques that are explored in-depth in this paper.

For instance, finding a fast transfer time within a given
budget is important for research collaborations. Consider

1With Amazon’s data transfer rate of 10 cents per GB
[1].

71



a researcher who would like to use sets of geological data
collected at distributed sites. She would like to get the data
transferred to a cloud service provider (data center) to run
computations as quickly as possible. On the other hand,
she has a limited amount of money to spend on the data
transfer, e.g. she may be working under a grant with limited
funds. By solving the budget-constrained transfer problem,
Pandora can help the researcher get timely results with a
limited budget. Similar examples apply to other cloud users
such as consultants, freelancers, newsroom staff, etc. In our
algorithms, we solve for the optimal transfer plan that meets
the constraints while minimizing total transfer latency, so
that cloud users can make the most of their funds.

Our algorithms for finding an optimal solution must con-
tend with several major challenges. First, there are many
different transfer strategies, and therefore the solution space
is massive. Second, each transfer option has different char-
acteristics: an Internet link between a pair of sites has a
unique bandwidth; further there are several shipment options
between a pair of sites (e.g. Ground, Two-Day, Overnight),
each with its own transit time and cost depending on the
geographic location of the sites. Third, each site also has
characteristics: the time it takes to unpack, plug in, and
transfer data from a disk varies by location. If the site is
a service provider, charges may apply to incoming Internet
bandwidth and disk handling. Fourth, the scheduled time
when a transfer should begin is important. Finally, we ob-
served that the optimal solution strategy is highly sensitive
to the budget constraint. The best transfer plan may look
very different for a transfer budget that is slightly smaller
or slightly larger.

Figure 1 shows an example that highlights these chal-
lenges. We plot the optimal transfer time as a function of the
specified budget constraint, for two different transfer scenar-
ios. The sites for these scenarios are shown in Table 1 (with
more details in Section 4). In Figure 1a we transfer 2 TB
of data from a single source at unm.edu, to a single sink at
uiuc.edu, while in Figure 1b we transfer 2 TB of data from
eleven different sources (sites 1 through 11 in Table 1), each
with 0.18 TB. The two plots show that the optimal transfer
time differs widely between different budget constraints. We
highlight some of the points in these plots and summarize
their use of disk shipment in Figure 1c.

By focusing on a single source and sink, Figure 1a shows
the general tradeoffs between shipment options. Faster ship-
ment options can result in a faster transfer time, but require
a larger cost budget. This tradeoff affects the shape of the
optimal budget-constrained solution curve. The solutions
can be divided into three sections by the points (1), (2),
and (3). As the budget constraint is increased, these solu-
tion points show, respectively, the cut-off when the budget
is sufficient to complete the transfer via Ground shipment
(from (1) to (2)), a faster Two-Day shipment (from (2) to
(3)), and the fastest Overnight shipment ((3) and beyond).
Within each section, the transfer time continues to fall as
the budget is increased, and more and more money is spent
sending data on Internet links, in parallel to the disk ship-
ments.

Figure 1b shows optimal transfer solutions for a network
with many sites. The transfer options used in Figure 1c
shows a sliver of the massive solution space. Deciding which
of the diverse transfer options to use is sensitive to the bud-
get constraint and has a critical impact on the shipment

(1)

(2)

(3)

 0

 48

 96

 144

 100  150  200  250

O
p
ti

m
al

 T
ra

n
sf

er
 T

im
e 

(h
rs

)

Budget Constraint ($)

(a)

(4)

(5)
(6)

(7)

(9)(8)

 0

 48

 96

 144

 192

 240

 100  150  200  250  300  350  400  450  500

O
p
ti

m
al

 T
ra

n
sf

er
 T

im
e 

(h
rs

)

Budget Constraint ($)

(b)

$ Hrs Shipment Links TB

1 120 109 unm.edu→uiuc.edu Ground 2.00
2 150 59 unm.edu→uiuc.edu Two-Day 2.00
3 185 31 unm.edu→uiuc.edu Overnight 2.00

4 120 206 indiana.edu→uiuc.edu Ground 2.00
5 200 73 unc.edu→uiuc.edu Overnight 1.88
6 215 60 wustl.edu→indiana.edu Two-Day 0.09

unc.edu→uiuc.edu Overnight 1.73
7 260 54 wustl.edu→uiuc.edu Two-Day 0.13
8 460 36 wustl.edu→uiuc.edu Overnight 0.19

unc.edu→uiuc.edu Overnight 0.50
9 500 32 indiana.edu→uiuc.edu Overnight 0.20

wustl.edu→uiuc.edu Overnight 0.19
unc.edu→uiuc.edu Overnight 0.19

(c)

Figure 1: Optimal transfer times given budget constraints.
Figure (a) shows the transfer of 2 TB from site 1 in Table 1,
while (b) shows the same data sent from sites 1-11. Table (c)
summarizes the disk shipments involved for points labeled
in (a) and (b). Internet transfers are not shown.

time. For example, point (5) and (7) only have a difference
of $60 in transfer budget, yet the shipment time is reduced
by 19 hours. The strategies differ in many ways – not only
are the shipment options used different, Overnight in (5)
and Two-Day in (7), but also the size of data in the disks,
1.88 GB and 0.13 GB respectively, and even the where the
shipment originates, unc.edu and wustl.edu.

Before we discuss our solutions, we would like to clarify a
couple of points. First, our back-of-the-envelope calculations
for the CCT testbed [4] show that only one to two disk sizes
are preferable for ease of management (e.g. to enable hot-
swapping disks into CCT). Since the focus of this paper is
on solving the planning problem, a further discussion of the
disk population is beyond our scope. Secondly, we aim to

72



derive optimal solutions no matter what the setting. Due
to the heterogeneity of dataset distribution and bandwidth
across sites (as seen in Table 1), degenerate solutions (e.g.
ship all or transfer all over Internet) would be sub-optimal.

2. PROBLEM FORMULATION
Pandora’s algorithms for creating data transfer plans re-

quire a clear representation of the various inputs. In this
section, we describe how the inputs are modeled into a con-
cise graph representation (more detail can be found in our
previous work [7]). We model the sites and data transfer net-
works as the nodes and edges of a directed graph. We then
incorporate the graph along with data sizes and locations
into a formal dynamic flow network [10]. This formulation
is useful because the network defines the solution space. A
feasible solution is one that obeys network constraints across
time.

2.1 Graph model

2.1.1 Internet and Shipping links

The edges on our graph represent the transportation of
data through the network of Internet and disk shipment
links. Each link has a capacity, a cost, and a transit time. An
Internet link has a constant capacity equal to the average
available bandwidth, a transit time set to zero (since mil-
lisecond latencies are negligible), and a cost of zero (except
when terminating in the sink).

Shipping links that transfer disks in packages have entirely
different properties. First, there are many levels of service,
e.g. Overnight, Two-day, Ground, etc. We treat each level
of service as a distinct link. For each shipping link, the cost
grows with the number of disks, but this growth is not linear
to the amount of data inside each disk. For example, sending
either 0.2 TB or 1.8 TB has the same cost (using 2 TB disks),
but sending 2.2 TB has a higher cost because an additional
disk is needed. Thus, a shipment link has a cost that follows
a step function of the amount of data transferred, capacity
that is infinite, and a transit time on the order of hours.

Our model captures the salient features for planning a
transfer in a compact form. These features will remain rel-
evant during the execution of the transfer plan. The cost
and transit time of links will rarely change during the ex-
ecution of the transfer because these are values that are
queried from the providers themselves. Likewise, capacity
should not change significantly – [11] has shown that the
throughput for large transfers across the Internet is very
stable. Only small transfers suffer from variable bandwidth,
however Pandora deals with large bulk transfers.

2.1.2 Site bottlenecks

Merely knowing the capacity, cost, and transit time of
each link is insufficient to model the transfer networks. There
are also end-site characteristics. For Internet links, an end-
site is restricted by incoming and outgoing bandwidth ca-
pacities. For instance, an end-site can only receive at the
data rate of the incoming bandwidth capacity, even if in-
dividual links have unused bandwidth. Our model imposes
these end-site Internet capacities. In the case of disks, the
data sent does not enter a site instantaneously when a pack-
age arrives. Rather, an individual at the receiving end must
remove the disk from its packaging, then plug in the disk
and transfer the actual bytes. Our model accounts for this.

Transfer Time T (hrs)

D
o
ll

ar
 C

o
st

 (
$
)

Solution Space

Optimal Solution

T*

B

C(T): Min−Cost Solutions

Figure 2: A sketch of the solution space according to trans-
fer time and dollar cost. The optimal solution satisfies the
budget constraint B in the shortest possible transfer time
T ∗.

2.2 Data Transfer Over Time
Our graph model is formalized as a dynamic flow network

N consisting of the set of directed edges A and vertices V
discussed above, along with the following attributes on these
elements. Each edge in the graph e ∈ A has a capacity ue,
transit time function τe, and a cost function ce, which is
a linear function for Internet links and a step function for
shipment links.

The budget-constrained transfer problem is then modeled
on this network. The budget constraint is given as a scalar
value B. Data is represented by assigning a demand at-
tribute Dv to all vertices v ∈ S+ that are data sources. The
destination vertex is assigned a negativeDv = −

∑
u∈S+ Du.

In a solution to the above problem, flow is assigned to
each edge at each time unit θ, denoted as fe(θ). These units
of flow must meet capacity and conservation constraints.
These constraints are similar to those for standard network
flow, except they are defined across all θ ∈ [0, T ), where T
is the time when all demands are met, i.e., the net flow that
has left each vertex is equal to its demand Dv.

We are looking for flows that meet the above constraints,
while reducing the transfer time. That is, our objective is:
Minimize T . Since our problem is budget-constrained, we
must also meet the constraint that the sum of all costs across
all times

∑
e∈A,θ∈[0,T ) ce(fe(θ)) is less than the budget B.

3. SOLUTION
From the solution space of data transfer plans, we are

looking for a solution that minimizes transfer latency sub-
ject to a budget constraint. In Figure 2 we sketch the solu-
tion space according to the transfer time and dollar cost of
the solutions. The entire solution space is colored in gray.
The horizontal line shows the budget constraint B of the
problem. The solutions we are interested in are in the area
on or below the line. The optimal solution is precisely the
solution with the smallest transfer time in this area. We
denote the time of the optimal solution as T ∗.

Our problem is to find the optimal solution among the
solution space. The strategy we adopt is to make use of
the line in Figure 2 that separates the solution space from
the non-solutions space. We denote as a function, C(T ),
the minimum cost among all solutions with transfer time T .
This allows us to leverage our previous algorithms in [7] to

73



Algorithm 1 Binary Search Functions

// type = {orig, lb, ub}
function binary findinterval(init head, budget,
type):
head = tail = init head
while cost > budget do

cost, endtime = solve mincost(deadline, type)
head = tail
tail = deadline
deadline = deadline * 2

end while
return head, tail

function binary search(head, tail, budget, type):
while head < tail do

midpoint = ⌊(head+tail)/2⌋
cost, endtime = solve mincost(midpoint, type)
if cost > budget then

head = midpoint+1
else

tail = endtime
end if

end while
return head, tail

Algorithm 2 Two-Step Min-Cost Binary Search

1: function twostep mincost binary search(budget):
2: head, tail = binary getinterval(1, budget, orig)
3: head, tail = binary search(head, tail, budget, orig)
4: return tail

find the value C(T ) for any given T . Using these algorithms,
one naive approach may be to compute C(T ) for each value
of T = 1, 2, ... until we find the smallest value T such that
C(T ) ≤ B. In fact, this strategy produces the optimal so-
lution at T ∗. However, this approach can be prohibitively
expensive. This motivates our development of faster search
strategies, which we do next.

3.1 Two-Step Binary Search using Deadline-
Constrained Minimum Cost Solutions

The function C(T ) is monotonically decreasing. This can
be seen by considering that the solution C(T ) can be repli-
cated at time T + 1, so the value of C(T + 1) by definition
will be at most C(T ). We make use of this property to cre-
ate an efficient binary search algorithm on C(T ) to find the
optimal solution.

This binary search is illustrated in Algorithm 1 and 2. It
runs in two main steps defined in line 2 and 3 in Algorithm 2.
The first part of our search finds both an upper bound and
lower bound on the optimal transfer time T ∗. It does so by
computing values of C(T ) for exponentially increasing val-
ues of T until a solution that meets the budget constraint is
found. The first value of T that meets the budget constraint
is used as the upper bound, while the immediately previous
tried value of T is the lower bound. Notice that this re-
quires computing exactly ⌈logT ∗⌉ + 1 deadline-constrained
minimum cost solutions.

Thereafter, a binary search is performed in the interval
between the lower bound and upper bound. After each iter-
ation of the search, the search interval for the next iteration

B

T*
lb

T*
ub Transfer Time T (hrs)

D
o
ll

ar
 C

o
st

 (
$
) C(T)

ub

lb
C  (T)

C  (T)

T*

I

Figure 3: Cub(T ), Clb(T ), and C(T ) minimum cost solution
curves.

Algorithm 3 Bounded Min-Cost Binary Search

1: function bounded mincost binary search(budget):
2: headub, tailub = binary getinterval(1, budget, ub)
3: headub, tailub = binary search(headub, tailub, budget,

lb)
4: headlb, taillb = binary search(1, tailub, budget, lb)
5: head, tail = binary search(taillb, tailub, budget, orig)
6: return tail

is selected depending on the value of C(T ): the upper half
of the current interval is selected when C(T ) is greater than
B, and then lower half is selected otherwise.

The binary search step can add, at most, ⌈logT ∗⌉ deadline-
constrained minimum cost computations. Thus, the to-
tal number of minimum cost computations required is only
2⌈logT ∗⌉+ 1 in the worst case.

However, while the number of computations grows only
logarithmically with the optimal transfer time T ∗, the ac-
tual time of computation grows at a much higher rate with
T ∗. This is because the time required to compute each con-
strained minimum cost solution grows with the size of the
problem which is determined by the deadline time T [7].
Thus performing a search by solving many of these mini-
mum cost computations can become expensive.

3.2 Bounded Binary Search using Strong Lower
and Upper Bounds

We can reduce the computation time of binary search if
we reduce the number of computations of the function C(T ),
especially when T becomes large. In this section, we show
how to reduce the binary search interval around T ∗, which
is when T becomes the largest. We accomplish this by intro-
ducing two forms of bounding functions, Cub(T ) and Clb(T ).
These bound the original function from above and below, re-
spectively. More concretely, these bounding functions obey
the relationship Clb(T ) ≤ C(t) ≤ Cub(T ). Like C(T ), they
are monotonically decreasing functions of T .

Figure 3 sketches these bounding functions. We denote
the time T where each bounding function intersects with the
budget constraint B as T ∗

lb, and T ∗

ub. From the definition of
the bounding functions, we have T ∗

lb ≤ T ∗ ≤ T ∗

ub. Thus, if
we know the values of T ∗

ub and T ∗

lb, they define an interval
I = [T ∗

lb, T
∗

ub] where T ∗ must reside in.
We can build an efficient binary search framework around

74



these bounding functions, as shown in Algorithm 3. This
algorithm replaces the exponentially increasing search done
directly on C(T ) in Algorithm 2 with a pair of searches for
T ∗

ub and T ∗

lb. First, the value of T ∗

ub is found in a similar
way to T ∗ in Algorithm 2. The exponentially increasing
search done to find initial bounds for Cub(T ) involves exactly
⌈logT ∗

ub⌉+ 1 computations of Cub. The binary search phase
given the initial bounds takes at most ⌈logT ∗

ub⌉ computations
of Cub. Next, after we have found T ∗

ub, we search for T ∗

lb.
We can skip the exponentially increasing search by using
T ∗

ub itself as the upper bound. The binary search phase
involves at most ⌈logT ∗

ub⌉+ 1 computations of Clb. Finally,
we perform a binary search for T ∗ on the interval [T ∗

lb, T
∗

ub].
This involves at most ⌈log(T ∗

ub − T ∗

lb)⌉ + 1 computations of
C.

Using this strategy, the worst case number of deadline-
constrained minimum cost computations required for the
original function is changed from 2⌈logT ∗⌉+1 to ⌈log(T ∗

ub−
T ∗

lb)⌉ + 1. On the other hand, additional computations to
solve bounding functions are required. Thus, for bound-
ing functions to reduce the binary search computation time,
they must be cheap to compute, and their values must not
be too far from each other.

3.3 Lower-bound and Upper-bound Networks
If the bounding functions are cheap and tight, the bounded

binary search solution approach could be very fast. In this
section, we construct bounding functions for the deadline-
constrained minimum cost problem. We prove that these
functions strongly bound the original problem. Later, in
Section 4 we show that these constructions are indeed cheap
and tight.

Before we present the bounding formulations, we first re-
view relevant parts of the time-expanded networks concept
used to solve the minimum cost problem with a deadline T .
More details can be found in our previous work [7].
In Figure 4a we show a data transfer network that con-

tains a single Internet transfer link between node A and B
that can transfer one unit of flow at each time unit, and
a single shipping option between node B and C that can
transfer four units of flow with a transit time of four time
units. This network is expanded into a time-expanded net-
work in Figure 4b, which explicitly represents the passing
of time while transferring data in the network. The time-
expanded network consists of holdover edges between every
time point that represents the holding of data during that
time (vertical edges), Internet transfer edges at every time
point (solid horizontal edges), and shipping transfer edges
at each relevant pick-up and delivery time (dashed slanted
edges). In this network, the capacity constraints allow a to-
tal of three units of data to be transferred from node A to
node C during the transfer time of T = 6.
We produce lower bound (LB) and upper bound (UB)

variants to the original time-expanded network (denoted
as TEN ) by combining Internet transfer edges at neigh-
boring time points. We systematically group k successive
Internet transfer edges into a single edge with a capacity
k times the original. Combining edges makes the prob-
lem smaller, thus meeting the desirable property of cheap
computation. We construct each of the variant networks in
a way such that the solutions of a deadline T -constrained
minimum cost solution on the variants obey the relation-
ship Clb(T ) ≤ C(t) ≤ Cub(T ). This makes them suitable as

A B C

[0, 1)
u = 1 u = 4

τ = 0 τ = 3

(a) Dynamic Flow Network

[0, 1)

[1, 2)

[5, 6)

[4, 5)

[3, 4)

[2, 3)

u = 1 u = 4

A B C

(b) Time-Expanded Net-
work (TEN)

A B C

[0, 1)

[1, 2)

[2, 3)

[3, 4)

[4, 5)

[5, 6)

u = 2 u = 4

(c) UB Variant with k = 2

A B C

[0, 1)

[1, 2)

[2, 3)

[3, 4)

[4, 5)

[5, 6)

u = 2 u = 4

(d) LB Variant with k = 2

Figure 4: An example dynamic flow network and the con-
struction of its time-expanded network and variants.

bounding functions. In addition, we also argue that the con-
struction allows variant solutions to be close to the solutions
of the original TEN network.

We show the construction of the bounding variants using
the example in Figure 4. We first walk through the UB vari-
ant. Groups of k Internet edges are combined into a single
edge. For example with k = 2, the edges (A[0,1), B[0,1)) and
(A[1,2), B[1,2)) with capacity 1 are combined into the single
edge (A[0,1), B[1,2)) with capacity 2. The combined single
edge faithfully represents the total amount of flow that can
be sent during the entire k time steps. Intuitively, this is
why the UB variant can act as a bound for the TEN solu-
tions. This relationship is given formally in the following
Lemma.

Lemma 3.1. The relationship C(T ) ≤ Cub(T ) holds for
all T , where C(T ) is the T -deadline constrained minimum
cost solution to the TEN network, and Cub(T ) is the T -
deadline constrained minimum cost solution to the UB net-
work.

Proof. The Lemma is proved by showing that any solu-
tion on the UB network can be transformed into a solution
in the TEN network with the same cost. Consider the In-
ternet transfer edges e(t) with capacity ue and cost per flow

75



ce at each time point t ∈ [0, T ) in the TEN network. Each
group with k of these edges with t = [ak, a(k+1)) make up a
UB edge eub(a) with capacity uek and cost per flow ce. Con-
sider a solution with flow through eub(a) of size F ≤ uek.
We can convert this flow into the TEN network by assigning
fe(t) = ce to the edges with t = [ak, ak + ⌊F/k⌋], and then
assigning any remaining flow to fe(ak + ⌊F/k⌋ + 1). This
obeys the capacity constraints of the TEN network edges,
while maintaining the same total cost on these edges.

Thus, if we have the T -deadline constrained minimum cost
solution to the UB network, Cub(T ), we can transform this
solution into a solution with the same cost in the TEN net-
work. This solution must have a cost greater than or equal
to C(T ), by the definition of C(T ) as the minimum cost with
transfer time T . We have shown C(T ) ≤ Cub(T ).

On the other hand, the combined edge in the UB network
misses opportunities for sending flow between some nodes.
This is the tradeoff we pay for constructing a smaller net-
work that is easier to compute. For example, (A[2,3), B[3,4))
does not allow the flow across A and B at time [2, 3) that
the TEN network allows. Still, our technique of grouping
edges in distinct groups of k mitigates the effect of missing
opportunities by keeping them within a fixed time frame k.
This is aimed at maintaining the UB solution close to that
of the TEN network.

The LB variant is constructed in a similar way to the
UB variant. However, in the case of the LB variant, the
combined edge is drawn in the opposite direction of time.
In the case of the LB variant, any flow in the TEN network
can be faithfully represented by the combined edges of the
LB network. This gives us the Lemma:

Lemma 3.2. The relationship Clb(T ) ≤ C(T ) holds for
all T , where Clb(T ) is the T -deadline constrained minimum
cost solution to the LB network, and C(T ) is the T -deadline
constrained minimum cost solution to the TEN network.

Proof. The Lemma is proved similarly to the previous
one. We show that any solution on the TEN network can
be transformed into a solution in the LB network with the
same cost. Consider the Internet transfer edges e(t) with
capacity ue and cost per flow ce at each time point t ∈ [0, T )
in the TEN network. Each group with k of these edges with
t = [ak, a(k + 1)) make up a LB edge elb(a) with capacity
uek and cost per flow ce. Consider a solution in the TEN
network with flow through the edges in t = [ak, a(k + 1)).
The sum of the flows is less than the combined capacities,
i.e., F =

∑
t∈[ak,a(k+1)) fe(t) ≤ uek. We can convert this

solution into a LB solution by assigning in the LB network
fe(a) = F . This obeys the capacity constraints of the LB
network edges, while maintaining the same total cost on
these edges.

Thus, if we have the T -deadline constrained minimum cost
solution to the TEN network, C(T ), we can transform this
solution into a solution with the same cost in the LB net-
work. This solution must have a cost greater than or equal
to Clb(T ), by the definition of Clb(T ) as the minimum cost
with transfer time T . We have shown Clb(T ) ≤ C(T ).

However, in the case of the LB variant, the combined edge
can artificially model flow being sent backwards in time.

Index Site BW Index Site BW
Sink uiuc.edu - 6 mtu.edu 33.1
1 unm.edu 82.9 7 ufl.edu 7.6
2 unc.edu 78.5 8 rochester.edu 6.9
3 indiana.edu 73.8 9 umn.edu 5.9
4 utexas.edu 70.7 10 ncsu.edu 4.6
5 duke.edu 64.6 11 wustl.edu 2.0

Table 1: Sites used in experiments. BW is the measured
available bandwidth (Mbps) to the Sink.

Setting Site Index Data Size (per site)

Uniform and
1-11 0.18 TB

Half Shipment

Skewed
1, 3, 5, 7, 9, 11 0.3 TB
2, 4, 6, 8, 10 0.04 TB

Table 2: Size of source data at each site for the various
experimental settings.

In Figure 4d we can send two units of flow on the edge
(A[3,4), B[2,3)) while obeying the flow constraints in the LB
network. Yet, this is physically impossible. We must be par-
ticularly careful that the LB variant solution does not stray
far from the TEN solution because of these time-traveling
edges. Thus, our construction uses the same global k value
across all pairs of sites. This restricts the time that flow can
travel back in time to only k units. For example, once a flow
has reached the time [3, 4) at any site, it cannot then travel
back to a time before [2, 3).

3.4 Using Partial Results
Our solution techniques are developed to produce optimal

solutions. When planning a potentially long and expensive
transfer, we believe that it is useful to solve for an optimal
solution. However, users may still want the option to begin a
transfer with sub-optimal results for transfer plans that take
a very long time to compute. In this case, we can stop the
binary search, and present the user with the solution with
the shortest transfer time, among those that meet the budget
constraint. In Algorithm 2, at least one constraint satisfying
solution will be available when the exponential search stage
is complete. In Algorithm 3, a constraint satisfying solution
is also available after the first stage. This is due to the result
of Lemma 3.1. A minimum cost solution to the UB variant
can be converted to a constraint satisfying solution of the
TEN network. In our experiments, we observe how fast
partial results become available, and how close to optimal
their transfer times are.

4. EXPERIMENTAL RESULTS
In this section, we use trace-driven experiments to evalu-

ate Pandora’s techniques presented in Section 3. We focus
on computation time as the main metric. The value of opti-
mal solutions solved by Pandora were presented in Figure 1
– in addition, we evaluate the quality of partial results.

4.1 Experimental Setup
Our experiments were driven by trace data on actual In-

ternet and shipment networks between academic sites. The
basic topology we used had a single sink at uiuc.edu and 11
additional sites at .edu domains as listed in Table 1.

The Internet bandwidth between the sites was derived
from PlanetLab available bandwidth traces measured using

76



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  48  96  144  192  240  288

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Time Deadline (T)

TEN UB LB

(a) Uniform

 0

 500

 1000

 1500

 2000

 2500

 48  96  144  192  240  288

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Time Deadline (T)

TEN UB LB

(b) Skewed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 48  96  144  192  240  288

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Time Deadline (T)

TEN UB LB

(c) Half Priced Shipment

Figure 5: Computation times for computing the T -deadline
constrained minimum cost for TEN, UB, and LB networks
with k = 4.

the Spruce measurement tool [21] by the Scalable Sensing
Service (S3) [25] (at 12:32 pm on Nov 15, 2009). We ob-
tained real shipping cost and time data between all sites by
using FedEx SOAP (Simple Object Access Protocol) web
services [3], with site addresses provided by a whois lookup
to the domains. For service charges at the sink, we used
Amazon AWS’s published costs.

Sites 1 through 11 were chosen evenly by taking one site

 0

 20

 40

 60

 80

 100

 120

 140

 100  150  200  250  300  350  400  450  500

In
te

rv
a

l 
(h

rs
)

Cost Budget ($)

Two-Step Binary Search
Bounded Binary Search

Figure 6: The difference in the binary search interval, us-
ing the Two-Step Binary Search in Algorithm 2 and the
Bounded Binary Search in Algorithm 3.

from each of 11 quantiles based on the measured bandwidth
between .edu domains and the sink. They serve as our data
sources. We use three different experimental settings. These
are chosen to show how our algorithms cope with diverse,
realistic environments. As shown in Table 2, they are: Uni-
form, which places 2 TB of data uniformly at each source
(0.18 TB each); Skewed, which places 1.8 TB at sources 1, 3,
5, 7, 9, and 11 (0.3 TB each) and 0.2 TB at sources 2, 4, 6,
8, and 10 (0.04 TB each); and Half Shipment, which places
data in the same way as the Uniform setting, but cuts the
shipment link costs to half of their real values. Where not
mentioned, we use the Uniform setting.

4.2 UB and LB network Microbenchmarks
Our first set of experiments, shown in Figure 5, com-

pares the computation times for solving the T -deadline con-
strained minimum cost problem on the original time-expanded
networks (TEN) against the same computation on UB and
LB networks. There is much variation in the measured com-
putation times. Still, generally for all three settings, the
computation time forms an upward trend with increasing T .
Also, the TEN network computations make up the majority
of high computation times. The UB and LB network com-
putations are comparatively cheaper. Thus, the UB and LB
networks meet the criteria for a bounding function of being
cheaper to compute than the original function.

In Figure 6 we investigate whether the bounding functions
are sufficiently tight. We show the interval that is searched
by the TEN network for both algorithms. For Algorithm 3,
this is the distance between T ∗

lb and T ∗

ub (used as parameters
in line 5), while for Algorithm 2, this is the interval found in
the first step (used as parameters in line 3). This interval is
large when the budget constraint is strict, because it grows
with T ∗. In contrast, the interval found with the bounding
functions does not grow with T ∗. Thus, the bounding func-
tions should be useful, especially when there is a very tight
budget constraint.

4.3 Binary Search Strategies
In this section, we look at the computation time for finding

an optimal solution to the budget-constrained transfer prob-
lem using our binary search strategies. We show the com-
putation times of the two-step binary search and bounded
binary search in Figure 7. We find that, in general, more
stringent cost budgets imply a longer time to compute. This

77



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100  150  200  250  300  350  400  450  500

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Cost Budget ($)

Two-Step Binary Search
Bounded Binary Search

(a) Uniform

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 100  150  200  250  300  350  400  450  500

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Cost Budget ($)

Two-Step Binary Search
Bounded Binary Search

(b) Skewed

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  50  100  150  200  250  300  350  400

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Cost Budget ($)

Two-Step Binary Search
Bounded Binary Search

(c) Half Priced Shipment

Figure 7: Computation times using different search strate-
gies.

is intuitive because a stringent cost budget will have a larger
value of T ∗, which in turn means that both the number of
search iterations increases, and larger time points for the
minimum cost problem will have to be solved.

When we compared the effectiveness of both strategies, we
found that in the majority of cases the computation time of
using the bounded binary search strategy is less than that
using the two-step binary search strategy. This pattern is
true for all three experimental settings, despite the differ-
ences in the computation time for each deadline T in Fig-
ure 5. This suggests that the bounded binary search strat-
egy is useful for solving transfer problems on a wide range
of networks.

-100

-50

 0

 50

 100

 100  150  200  250  300  350  400  450  500

P
e

rc
e

n
t 

D
if
fe

re
n

c
e

 (
%

)

Cost Budget ($)

Computation Time Search Interval

Budget Range Pearson Coefficient
[0, 150] 0.30
[0, 175] 0.28
[0, 200] 0.53
[0, 225] 0.50
[0, 250] 0.50
[0, 275] 0.53
[0, 300] 0.60
[0, 325] 0.60
[0, 350] 0.11

Figure 8: The difference between the computation time of
bounded and two-step binary search strategies is correlated
with the difference in the size of the interval between the
strategies. The positive correlation is strong in the first half
of the budget range.

The comparison also shows variance in the relative differ-
ence in computation time for the bounded binary search and
two-step binary search strategies. Some of this variance can
be seen as a natural consequence of the variance we observed
in Figure 5 for minimum cost computation running times.
Yet, we are able to determine in Figure 8 that the difference
in computation is correlated to the difference in interval size
for the final minimum cost binary search. The plot shows the
relative percentage difference of both the computation time
and interval length. The shape of the curves look roughly
correlated. We quantify this correlation using the Pearson
product-moment correlation coefficient statistic [16]. The
Pearson coefficient is a value between -1 and 1, that is used
to measure the strength of linear dependence. A strong pos-
itive correlation would have a coefficient close 1. We apply
the Pearson correlation across various ranges of the budget
constraint. We observe from Figure 8 that there is a some-
what strong correlation of 0.5 when looking at the first half
of the budget range (up to $320), for which computation
times are relatively high. Since values are significantly pos-
itive, we can conclude that the bounded binary search is
effective because the bounding functions limit the number
of computations required for the final minimum cost binary
search.

In Figure 9, we break down the computation time of the
binary search techniques into their various stages, for a few
specific cost budgets. Each slot is color-coded to represent
the minimum cost computation of a network variant. The
computations are divided into stages of the binary search
algorithms by vertical lines. Algorithm 2 has two stages
(lines 2 and 3) while Algorithm 3 has four stages (lines 2
through 5). Both Figure 9 (a) and (b) show the common case
where the bounded binary search is better. In (a), finding

78



LBUB TEN

Computation Time (sec)

0 500 1000 1500 2000 2500

Bounded

Two−Step

(a) Cost Budget = $135

Computation Time (sec)

0 250 500

Bounded

Two−Step

(b) Cost Budget = $150

Computation Time (sec)

0 250 500

Bounded

Two−Step

(c) Cost Budget = $210

Figure 9: Timeline of the minimum cost computations taken
in Algorithm 2 and Algorithm 3. Each slot represents a com-
putation. The slots are grouped according to stage, which
are presented in lines 2-3 of Algorithm 2 and lines 2-5 of
Algorithm 3.

the value of T ∗

ub for the bounded binary search finishes a
little before the upper limit is found in the two-step binary
search. Then, given these upper limits, the binary search
for T ∗

lb reduces the binary search interval much faster than
the binary search on the original problem. In this case,
the interval is small enough that only a single minimum
cost computation of the original problem is required in the
last stage. In (b), the first three stages of the bounded
binary search finish before the first stage of the two-step
binary search. In this case, using the bounding functions
allowed us to find a tighter interval in a shorter amount
of time for the final stage. Finally, (c) shows an example
of the less common case where the computation time for
the bounded binary search takes longer than the two-step
version. In this case, the exponential search stage of the
two-step binary search finishes much earlier than the first
three stages of the bounded binary search. Then, in the final
stage of the bounded binary search, the computation time of
each minimum cost took longer than the unbounded search.
This can happen because of the variations in computation
times shown in Figure 5. However, despite these variances,
we have observed (previously in Figure 7) that the bounded
binary search is a better option in most cases.

4.4 Partial Result Solutions
As our final set of experiments, we look at the effectiveness

of our binary search algorithms in producing non-optimal
partial results. Recall that for both binary search strategies,
the first feasible solution is found after their respective first
stages. The results in Figure 9 show that at least one sub-
optimal solution that meets constraints becomes available
much earlier than the final optimal solution. For example,

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0  250  500  750  1000  1250  1500  1750  2000  2250  2500

T
ra

n
s
fe

r 
ti
m

e
 (

h
rs

)

Computation time (sec)

Two-Step Binary Search
Bounded Binary Search

(a) Cost Budget = $135

 40

 60

 80

 100

 120

 140

 0  250  500

T
ra

n
s
fe

r 
ti
m

e
 (

h
rs

)

Computation time (sec)

(b) Cost Budget = $150

 40

 60

 80

 100

 120

 140

 0  250  500

T
ra

n
s
fe

r 
ti
m

e
 (

h
rs

)
Computation time (sec)

(c) Cost Budget = $210

Figure 10: Evolution of best transfer time during binary
search.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100  150  200  250  300  350  400  450  500

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Cost Budget ($)

Two-Step Binary Search
Bounded Binary Search

Figure 11: Computation time needed to find a solution
within 10% of the optimal.

in Figure 9a, a solution becomes available in less than 350
seconds for the two-stage binary search, and in less than 100
seconds for the bounded binary search.

For partial results, we are interested not only in when a
solution becomes available. It is important also to consider
the quality of the solution. We show this in Figure 10. We
plot the evolution of the best solution’s transfer time as the
binary search progresses. We observe that the bounded bi-
nary search finds solutions with short transfer time much
faster than the two-stage strategy. Intuitively, this is be-
cause the feasible solutions on the UB network are feasible
solutions on the original TEN network.

In Figure 11 we show how quickly the binary search strate-

79



gies converge to near-optimal solutions across all cost bud-
gets. We plot the computation time needed to get a solution
that is within 10% of the optimal transfer time. Compared
with Figure 7a, we see a significant decrease in computa-
tion time required. For lower cost budgets, the computation
time is less than half of finding the optimal time. Thus, us-
ing partial results is an attractive technique for users that
wish to decrease computation time.

5. RELATED WORK
Previous work has looked at bulk data transfers in the

Grid [6, 17], and on PlanetLab [19]. Researchers have found
that the use of intermediate nodes can help speed up bulk
data transfer. Yet, the scale of TBs in today’s infrastruc-
tures challenges us to think of new approaches.

We are not the first to propose shipping data using phys-
ical media. Jim Gray’s SneakerNet [13], the PostManet
project [12], and DOT [23] all make use of physical shipment.
Also, in industry, services such as Amazon’s Import/Export
provide interfaces to use physical disk shipment [1]. Our
work combines these physical shipping networks with In-
ternet links to reduce cost and latency of cooperative bulk
transfers.

There are many success stories running ad-hoc computa-
tions in industry clouds [2]. Meanwhile, in the scientific do-
main one of the main obstacles is that data sets are very
large and distributed across many organizations [20, 24].
Our work is aimed at alleviating the large cost and long
latency of transferring this data.

The budget-constrained data transfer problem presented
is related to the quickest transshipment and evacuation prob-
lems posed on dynamic flow networks [10, 15, 9]. Our prob-
lem is different, because it contains edges with step function
costs. Step function costs are considered in similar problems
in operations research [22], such as [14] and [18]. Yet these
problems do not take into account transfer latencies. Thus,
finding an optimal solution is more challenging than the
aforementioned works. Supply chain management consid-
ers the efficient transporting of physical goods across many
different transportation networks as a key strategic goal [8].
As far as we know, this literature has not considered either
bulk data or the Internet as a transportation network.

In our previous work, we looked at the deadline-constrained
minimum cost problem [7]. We leverage this previous work
as a building block for our algorithms.

6. CONCLUSION
In this paper, we have formulated and solved the prob-

lem of finding the fastest bulk data transfer plan given a
strict budget constraint. We first characterized the solution
space, and observed that the optimal solution can be found
by searching through solutions to the deadline-constrained
minimum cost problem [7]. Based on these observations, we
devised a two-step binary search method that will find an op-
timal solution. We then developed a bounded binary search
method that makes use of bounding functions that provide
upper- and lower bounds. We presented two instances of
bounding functions, based on variants of our data transfer
networks, and proved that they do indeed provide bounds.
Finally, we evaluated our algorithms by running them on
realistic network inputs. We found that our techniques sig-
nificantly reduce the time needed to compute solutions.

7. REFERENCES
[1] “Amazon Web Services,” Website, http://aws.amazon.com/.

[2] “Amazon Web Services: Case Studies,” Website,
http://aws.amazon.com/solutions/case-studies/.

[3] “Federal Express Developer Resources Center,” Website,
http://fedex.com/us/developer/.

[4] “Illinois Cloud Computing Testbed (CCT),” Website,
http://cloud.cs.illinois.edu/.

[5] “UPS Online Tools,” Website,
http://www.ups.com/e comm access.

[6] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster, “The globus striped
gridftp framework and server,” in Proc. of ACM/IEEE
Supercomputing (SC), 2005, pp. 54–.

[7] B. Cho and I. Gupta, “New Algorithms for Planning Bulk
Transfer via Internet and Shipping Networks,” in Proc. of
IEEE ICDCS, 2010.

[8] S. Chopra and P. Meindl, Supply Chain Management:
Strategy, Planning, and Operation, 4th ed. Pearson Prentice
Hall, 2010, ch. 13.

[9] L. Fleischer and M. Skutella, “Quickest Flows Over Time,”
SIAM J. Computing, vol. 36, no. 6, pp. 1600–1630, 2007.

[10] L. R. Ford and D. R. Fulkerson, “Constructing Maximal
Dynamic Flows from Static Flows,” Operations Research,
vol. 6, no. 3, pp. 419–433, 1958.

[11] S. Garfinkel, “An evaluation of Amazon’s Grid computing
services: EC2, S3 and SQS,” Tech. Rep. TR-08-07, Aug 2007.

[12] N. Garg, S. Sobti, J. Lai, F. Zheng, K. Li, R. Y. Wang, and
A. Krishnamurthy, “Bridging the digital divide: storage media
+ postal network = generic high-bandwidth communication,”
Trans. Storage, vol. 1, no. 2, pp. 246–275, 2005.

[13] J. Gray and D. Patterson, “A conversation with Jim Gray,”
ACM Queue, vol. 1, no. 4, pp. 8–17, 2003.

[14] K. S. Hindi, A. Brameller, and K. M. Hamam, “Solution of
fixed cost trans-shipment problems by a branch and bound
method,” International Journal for Numerical Methods in
Engineering, vol. 12, no. 5, pp. 837–851, 1978.

[15] B. Hoppe and E. Tardos, “The Quickest Transshipment
Problem,” Math. Oper. Res., vol. 25, no. 1, pp. 36–62, 2000.

[16] M. G. Kendall and A. Stuart, The advanced theory of
statistics. Hafner Publishing Co., 1961, vol. II.

[17] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu,
P. Sadayappan, I. Foster, and J. Saltz, “Using overlays for
efficient data transfer over shared wide-area networks,” in Proc.
of ACM/IEEE SC, 2008.

[18] H.-J. Kim and J. N. Hooker, “Solving fixed-charge network flow
problems with a hybrid optimization and constraint
programming approach,” Annals of Operations Research, vol.
115, pp. 95–124, 2002.

[19] K. Park and V. S. Pai, “Scale and performance in the CoBlitz
large-file distribution service,” in Proc. of USENIX NSDI,
2006, pp. 29–44.

[20] L. Ramakrishnan, K. R. Jackson, S. Canon, S. Cholia, and
J. Shalf, “Defining future platform requirements for e-Science
clouds,” in Proc. of the ACM Symposium on Cloud
Computing (SoCC), 2010.

[21] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study
of available bandwidth estimation tools,” in Proc. of ACM
SIGCOMM IMC, 2003, pp. 39–44.

[22] H. A. Taha, Operations Research: An Introduction, 8th ed.
Pearson Prentice Hall, 2007, ch. 5.

[23] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An
architecture for internet data transfer,” in Proc. of USENIX
NSDI, 2006, pp. 19–19.

[24] P. Watson, “e-Science in the Cloud with CARMEN,” in Proc.
of International Conference on Parallel and Distributed
Computing Applications and Technologies, 2007.

[25] P. Yalagandula, P. Sharma, S. Banerjee, Sung-Ju.Lee, and
S. Basu, “S3: A scalable sensing service for monitoring large
networked systems,” in Proc. of ACM SIGCOMM INM
(Workshop), Sep. 2006.

80




