
Hypervisor Introspection: A Technique for Evading Passive Virtual
Machine Monitoring

Gary Wang Zachary J. Estrada Cuong Pham Zbigniew Kalbarczyk
Ravishankar K. Iyer

University of Illinois at Urbana-Champaign

Abstract

Security requirements in the cloud have led to the de-
velopment of new monitoring techniques that can be
broadly categorized as virtual machine introspection
(VMI) techniques. VMI monitoring aims to provide
high-fidelity monitoring while keeping the monitor se-
cure by leveraging the isolation provided by virtualiza-
tion. This work shows that not all hypervisor activ-
ity is hidden from the guest virtual machine (VM), and
the guest VM can detect when the hypervisor performs
an action on the guest VM, such as a VMI monitoring
check. We call this technique hypervisor introspection
and demonstrate how a malicious insider could utilize
this technique to evade a passive VMI system.

1 Introduction

Despite cloud computing’s widespread adoption, secu-
rity in the cloud remains a major concern for companies
and organizations. Because public cloud infrastructure
may be shared by competing companies, it is not surpris-
ing that many organizations are wary of moving data into
public clouds. Due to these concerns, public cloud oper-
ators are expected to employ various forms of security
monitoring to detect malicious activity. To accomplish
this, traditional network and host-based Intrusion Detec-
tion Systems (IDS) are often deployed. In addition to
these monitoring systems, virtualized environments can
leverage a unique monitoring technique known as Virtual
Machine Introspection (VMI) [3].

In VMI, the security monitor is located at the hypervi-
sor level, and inspects a guest virtual machine (VM). The
benefits of VMI are twofold. First, the monitor is isolated
from the guest VM, so it is difficult (if not impossible) for
a malicious VM to compromise the VMI monitor unless
it utilizes a VM escape exploit [5]. Secondly, the VMI
monitor has access to the underlying hardware state of
the VM because the hypervisor manages the hardware

resources allocated to the VM and is responsible for vir-
tualizing any hardware devices. With access to the hard-
ware state of the VM, the monitor can obtain informa-
tion about the VM’s activities, such as current running
processes or opened files. This combination of monitor
security and fidelity makes VMI an attractive monitoring
technique.

There are two kinds of VMI monitoring: active and
passive. Active VMI revolves around monitoring checks
triggered by certain events (usually in hardware), such as
specific hardware registers or memory regions being ac-
cessed. Passive VMI, on the other hand, performs a mon-
itoring check on a predefined interval, such as checking
what processes are running every second.

Our work demonstrates that not all hypervisor activity
is isolated from the guest VM. In particular, we show that
it is possible for a guest VM to determine the presence
of a passive VMI system and its monitoring frequency
through a timing side-channel. We call this technique
hypervisor introspection (HI), which is the converse of
VMI. In addition to HI, we also present two insider at-
tack scenarios that leverage HI to evade a passive VMI
monitoring system. Lastly, we discuss current state-of-
the-art defenses against side-channel attacks in cloud en-
vironments and their shortcomings against HI.

2 Related Work

Previous work looking at side-channel attacks in cloud
environments have focused on obtaining information
from co-resident VMs via cache-based side-channels.
For Infrastructure-as-a-Service (IaaS) clouds, Ristenpart
et al. looked at various side-channel attacks to determine
co-residency of Amazon EC2 instances [10], and Zhang
et al. explored the use of a cache-based side-channel
to steal cryptographic keys from a co-resident VM [14].
For newer Platform-as-a-Service (PaaS) clouds, Zhang
et al. have looked at extracting secrets and compromis-
ing pseudorandom number generators of co-located PaaS



tenants [15].
Other previous work has also looked at determining

the existence of a hypervisor (i.e., determining whether
or not an environment is virtualized). One can determine
the presence of a hypervisor by running code that will
induce hypervisor overhead, and timing the execution of
such code [2].

Our work differs from these previous work in that
we look to use a side-channel to determine information
about the hypervisor’s activities instead of a co-resident
VM’s activity. Our work goes beyond simply determin-
ing the existence of a hypervisor, and instead reaches
conclusions about the hypervisor’s activity. Thus, the
presented work is, to the best of our knowledge, the first
to infer hypervisor activity from within the guest VM.

3 Hypervisor Introspection

In this section, we discuss the VMI monitor we devel-
oped to test HI against, and the side-channel we used to
perform HI. The test system used for all of our exper-
iments was a Dell PowerEdge 1950 server with 16GB
of memory and an Intel Xeon E5430 processor run-
ning at 2.66GHz. The server was running Ubuntu 12.04
with kernel version 3.13. The hypervisor used was
QEMU/KVM version 1.2.0, and the guest VMs were
running Ubuntu 12.04 with kernel version 3.11

3.1 VMI Monitor

In order to test the effectiveness of HI, we implemented a
VMI monitor. To accomplish this, we used LibVMI [7].
LibVMI is a software library that helps with the devel-
opment of VMI monitors. It focuses on abstracting the
process of accessing a guest VM’s volatile memory. The
volatile memory of a VM contains information about the
guest VM’s operating system (OS), such as kernel data
structures, which can be examined to determine runtime
details such as running processes or active kernel mod-
ules.

Our VMI monitor is built on top of the process listing
example included with LibVMI version 0.12. In addition
to listing the current running processes of the monitored
VM, this VMI monitor lists the number of open sockets
(both Unix and TCP) associated with each process. The
monitor maintains a whitelist of processes that can have
sockets open, and raises an alarm when a non-whitelisted
process has an open socket.

This monitor could be used to detect unauthorized pro-
cesses accessing the network. Network access is typi-
cally closely monitored, so the information obtained by
our monitor is useful in many scenarios (e.g., security
monitoring and auditing). LibVMI is a popular VMI li-

Observer
In

VM

Hypervisor

Observer notes disruption 
and infers that there is 

hypervisor activity

Hypervisor pauses VM 
and checks VM state

Time

System active/
running

VM suspend time
side-channel

VM
suspend

VM
resume

Figure 1: Illustration of the VM suspend side-channel
where an observer notes disruptions in VM activity to
determine when the hypervisor is preforming some ac-
tion on the VM.

brary, so the performance of this monitor is representa-
tive of environments utilizing VMI.

Because the polling rate of the VMI monitor is di-
rectly related to the performance overhead of the mon-
itor, the polling rate must be chosen carefully so as to
not introduce an unacceptable decrease in VM perfor-
mance. Based on the benchmarking results from [11],
there is a large jump in performance overhead (from 5%
to 35%) after the polling frequency goes over once per
second. Thus, we configured the VMI monitor to poll
the guest VM every second. This rate introduced only a
5% overhead in VM performance based on benchmark
results from UnixBench [1], which matches the results
from [11]. Additionally, this overhead is similar to over-
head introduced by an active VMI monitoring system [9].

3.2 VM Suspend Side-channel

Because HI revolves around making measurements from
a side-channel and inferring hypervisor activity, we first
had to identify the actual side-channel to be exploited.
We noted that whenever the hypervisor wants to per-
form a monitoring check on a guest VM, the VM has
to be paused in order to obtain a consistent view of the
hardware state. If an observer can detect these VM sus-
pends, then that observer might be able to reach some
conclusions about the monitoring checks performed by
the hypervisor. We call this side-channel the VM suspend
side-channel. We came up with two potential methods
of measuring the VM suspends: network-based timing
measurements and host-based, in-VM timing measure-
ments. Because the network is a noisy medium due to
dropped packets and routing inconsistencies, we focused
on performing in-VM measurements to detect VM sus-
pends.



Figure 2: Output from the dmesg -d command being run after our in-VM measurement kernel module is inserted.
The number between the angle brackets is the time interval between log entries. Note that after the first alert of a
potential VM suspend, the interval is around 1s, which matches our VMI system’s monitoring interval.

3.2.1 In-VM Timing Measurements

We note that an observer would require access to the
VM he would want to perform measurements on, which
would be possible in an insider threat or stolen creden-
tials scenario. If the observer would like to perform the
measurements without access to the target VM, he could
attempt to obtain a co-resident VM [10] and perform the
measurements on that VM. Because co-resident VMs run
on top of the same hypervisor, the measurements per-
formed on one VM should hold for other co-resident
VMs unless the hypervisor is selective in choosing which
VMs to monitor.

By timing frequently recurring OS events (e.g., those
related to scheduling), the observer can determine when
VM suspends occur and infer hypervisor activity. This
is illustrated in Figure 1. We chose two events to mea-
sure: process scheduling and I/O read operations. These
events were chosen since modern OSes run many pro-
cesses concurrently. These processes need to be con-
stantly scheduled and read data from the disk or other
processes. Therfore, both of these events occur at a high
frequency during normal OS operation. In our test sys-
tem, we found that the combined event frequency was
around 14300 events per second or one event every 70µs
for an idle system.

To measure the frequency of these events, we lever-
aged jprobes. Jprobes are special kernel probes (kprobes)
that hook into any kernel function’s entry point. When
the hooked function is called, execution is redirected
to the handler function registered to the jprobe. We
created jprobes that hooked into the schedule and
sys read kernel functions. The jprobe’s handler func-
tion generated a timestamp using do gettimeofday
and checked the timestamp against a shared (i.e., global)
“last recorded” timestamp. If the time difference was
greater than a certain threshold, then an alert was written
out to the kernel log saying a long pause was detected.
The last recorded timestamp was then updated regard-
less of a long pause being detected. We implemented the
two jprobes in a kernel module, and example output from
these jprobes is shown in Figure 2.

The threshold time was determined empirically
against the implemented LibVMI monitor. Our goal was

to find a threshold value that was less than the pause
introduced by a VM suspend, but greater than the de-
lays between the function calls during normal OS op-
eration (i.e., minimize false positives of suspected VM
suspends). In our testing, we found that 5ms was a good
threshold value to differentiate VM suspends from delays
due to normal OS operation.

3.3 Limitations of Hypervisor Introspec-
tion

There are two limitations to HI: the accuracy of the mon-
itoring intervals measured by HI and determining the
threshold value for identifying VM suspends. Our testing
of HI showed that it is capable of determining monitoring
intervals down to 0.1s. This was determined by testing
HI against increasingly frequent monitoring checks, and
the maximum frequency resolved by HI was one check
every 0.1s (10 Hz). The resolution limit of the HI mea-
surements is also present in Figure 2 on the last two lines.
The numbers in the angle brackets (i.e., the monitoring
interval) are accurate to a tenth of a second.

Because the threshold value for HI is found through
empirical testing, it is not straightforward to develop HI
for any given system. However, there is some leniency in
finding a suitable threshold value. Our testing of HI in-
dicated that a threshold value from 5ms to 32ms yielded
the same accuracy when performing HI and detecting the
VM suspends. As future work, the threshold value may
be correlated with various system specifications, such as
kernel version, CPU model/frequency, and system load.
After finding threshold values on various systems via em-
pirical testing, a formal relationship between the various
system specifications and the threshold value may be de-
rived to obtain a threshold without testing.

4 Evading VMI with Hypervisor Intro-
spection

Although hypervisor introspection can be used to deter-
mine the existence of a passive VMI monitoring and its
monitoring interval, it may not be clear how this infor-
mation could be used to actually evade the monitoring



system. This section discusses two applications of HI to
hide malicious activity from a passive VMI system.

4.1 Insider Attack Model and Assumptions

We present an insider threat attack model where the in-
sider already has administrator (i.e., root) access to VMs
running in a company’s public IaaS cloud. The insider
knows that he will be leaving the company soon, but
would like to maintain a presence on the VMs he has
access to. The insider does not have access to the un-
derlying hypervisor hosting the VMs, but knows that the
company is utilizing some form of passive VMI monitor-
ing. We also assume that the company’s VMI monitor is
similar to the monitor we implemented, which regularly
checks for unauthorized processes running with an open
socket. As insiders have full control over their VMs, the
company relies on VMI for monitoring, so changes to the
VM, such as kernel modifications or new files created,
are not detected.

In this attack model, the insider can utilize HI to detect
invocations of the monitor and to hide malicious activi-
ties from the VMI monitor.

4.2 Large File Transfer

Attackers commonly want to exfiltrate data out of the
network after compromising a system. The attacker may
leverage various tools and protocols to accomplish this,
such as secure copy (SCP), file transfer protocol (FTP),
the attacker’s own custom utility, or any number of other
file transfer methods. A passive VMI system may de-
tect attempts at data exfiltration by maintaining a restric-
tive whitelist of processes that are allowed to run with
a network socket open. A restricted VM would have a
whitelist with zero or few entries.

For sufficiently large files being transferred by a non-
whitelisted process, the transfer time would be longer
than the monitoring interval and the VMI monitor would
detect the file transfer. This scenario is illustrated in Fig-
ure 3a. We tested the effectiveness of our VMI monitor
for this scenario by transferring a 250MB file over TCP
from the monitored VM to a co-resident VM, and our
VMI monitor detected the Python process running with
an open socket and signaled an alarm.

A large file can be transferred over the network with-
out triggering any VMI alarms by splitting the file into
chunks and transferring each chunk between monitoring
checks. This process is illustrated in Figure 3b. Thus, HI
can be used to time the transfer of each chunk to evade
the VMI system.

We implemented this attack by writing a Python script
that transfers a chunk of a file each time it is executed.

Time

File Transfer
Monitoring

Check
Alarm

Figure 3a: Illustration of an unauthorized file transfer be-
ing detected by the VMI system

Time

File Transfer
Monitoring

Check

Figure 3b: Illustration of how a large file can be trans-
ferred in chunks by a non-whitelisted process without
triggering the passive VMI monitor.

The offset of the current chunk is written to an “off-
set log” file after each execution, so that the next exe-
cution knows which chunk to transfer. We extend our
HI kernel module to call the Python script with the
call usermodehelper kernel function after a sus-
pected VM suspend. With our modified HI kernel mod-
ule and Python script, we were able to transfer the same
250MB file without being detected by our VMI monitor.

On our test system, naı̈vely transferring the entire
250MB file at once over a TCP connection between two
co-resident VMs took on average (over 100 tests) 4.905s
with a standard deviation of 0.414s. Using our technique
with 8MB chunks, the entire transfer takes 32 calls to the
Python script, and thus, 32 monitoring intervals. Because
each monitoring interval is 1s long, the entire transfer
takes around 32s, which is about eight times the transfer
time of the naı̈ve method.

We note that the transfer speed of the large file using
this method depends on the polling frequency of the VMI
monitor. Lower polling frequencies lead to longer trans-
fer times because each chunk transfer is triggered by a
monitoring check, so chunks would be transferred less
frequently. However, the attacker can increase the chunk
size to counteract this delay after learning the polling fre-
quency through HI. Increasing the chunk size is risky,
and it may end up triggering the VMI system, so the at-
tacker would likely verify a larger chunk size on his own
system before performing the attack. Figure 4 shows the
tradeoffs in increasing the chunk size for the file transfer.



7 8 9 10 11 12 13 14 15
Chunk Size (MB)

0

20

40

60

80

100
D

e
te

ct
io

n
 R

a
te

 (
%

)

32 checks

26 checks

21 checks

18 checks

Figure 4: Chunk size versus detection rate for hiding a
large file transfer using HI. Note the tradeoff between
number of monitoring checks (i.e., transfer time) and de-
tection rate.

Increased chunk size leads to higher detection rate, but
the whole file is transferred in fewer monitoring checks.

4.3 Backdoor Shell
In addition to exfiltrating data, attackers typically want to
maintain access to compromised systems by installing a
backdoor. A naı̈ve backdoor that listens for an incoming
connection or connects back to the attacker would be de-
tected by the passive VMI system because the backdoor
will have a socket open.

A backdoor can evade the passive VMI system, how-
ever, by repeatedly connecting back to the attacker be-
tween monitoring checks. A backdoor “client” is run on
the VM between the monitoring checks which connects
to a backdoor “server” on the attacker’s machine. The
backdoor server maintains a queue of commands to be
run on the VM by the backdoor client. The backdoor
client performs a command cycle for every two monitor-
ing checks. A command cycle is illustrated in Figure 5
and is made up of the following steps:

1. The initial monitoring check occurs

2. The backdoor client connects to the attacker’s ma-
chine, which is listening for this connection

3. The client retrieves the next command to be run or
is told that there is no command to be run currently

4. The backdoor client saves the command to be run
and terminates before the next monitoring check

5. The next monitoring check occurs

VM Attacker

1

5

2

3

Command 1

Command 2

Command 3

Command 4

Command 5

Command 1

Command 1

Command 1
Executing

Command 1 Output

4

6

Command 
Queue

Time

Monitoring Check

Network Activity

7

Figure 5: Illustration of the various steps in a command
cycle as described in Section 4.3.

6. The backdoor client runs the command it saved

7. The output of the command is sent back to the
server

We implemented the backdoor client and server as
two Python scripts. The backdoor server maintains a
queue for commands that are read from standard input,
and the backdoor client either retrieves the next com-
mand to be run or executes the current command and
sends the output back to the backdoor server. The back-
door client script is called by the HI kernel module
with call usermodehelper after each suspected
VM suspend.

With this backdoor, the attacker can run com-
mands such as cat /etc/shadow and cat
/root/.ssh/id rsa to dump password hashes
and SSH private keys. While our backdoor client was
running, our LibVMI monitor did not raise any alarms
across ten tests. Conversely, a naı̈ve backdoor that
always listened for incoming connections was detected
by the LibVMI monitor in all ten tests.

Although this backdoor lets some commands be run
on the VM, longer running commands would still be de-
tected by the VMI monitoring system because the send-
ing of the command output would be too late and occur
during the monitoring check. The command cycle could



VM Attacker

1

5

2

3

Command 1

Command 2

Command 3

Command 4

Command 5

Command 1

Command 1

Command 1
Executing

Command 1 Output

4

6

Command 
Queue

Time

Monitoring Check

Network Activity

7

Command 1
Output

Figure 6: Illustration of the modified command cycle to
allow for longer running or more verbose commands

be modified to occur over three monitoring intervals to
make the backdoor client more flexible with longer run-
ning commands by saving the command output and wait-
ing for the third monitoring check to occur before send-
ing the output back to the backdoor server. The modi-
fied command cycle is shown in Figure 6. The modified
command cycle would allow for longer running or more
verbose commands at the cost of a decreased command
throughput (i.e., the backdoor server has to wait longer
to receive the command output). However, this tradeoff
may be worth the loss in throughput depending on the
attacker’s goals and requirements.

The command output latency depends on the polling
frequency of the VMI monitor similar to the file trans-
fer latency described in Section 4.2. If the polling fre-
quency is low, the attacker will have to wait a longer
period before the output of the command is returned to
the attacker. The attacker may partially work around this
by modifying the command cycle to send more than one
command to be run at a time.

5 Defenses Against Hypervisor Introspec-
tion

In this section, we discuss current state-of-the-art de-
fenses against side-channel attacks in virtual environ-

ments and their shortcomings in defending against HI.
We also discuss a potential defense against HI that aims
to address the shortcomings of the current state-of-the-art
defenses.

5.1 Introducing Noise to VM Clocks

Because HI relies on fine-grained timing measurements
to determine occurrences of VM suspends, it follows that
reducing the accuracy or granularity of VM clocks could
prevent HI. Previous work have looked at reducing the
granularity or accuracy of time sources to prevent cross-
VM side-channel attacks. Although these previous work
aims to address cross-VM side-channel attacks, many are
also somewhat applicable to hindering HI.

Vattikonda et al. explored the possibility of fuzzing
timers to reduce the granularity of measurements needed
for side-channel attacks [13]. They modified the Xen hy-
pervisor to perturb the x86 RDTSC instruction by round-
ing it off by 4096 cycles. Because the RDTSC instruc-
tion is commonly used to obtain high-resolution times-
tamps, side-channel attacks may be prevented. An ad-
ditional benefit of fuzzing the RDTSC instruction was
that timing system calls, such as gettimeofday and
clock gettime were fuzzed too. Although HI relies
on one of these system calls for timestamping, the per-
turbations caused only a 2µs change in the true RDTSC
value. HI needs measurements on the order of millisec-
onds, so the fuzzing does not perturb the RDTSC value
enough to hinder HI.

Li et al. developed a system called StopWatch that re-
placed the VM clock with a virtual clock that would con-
stantly skew [6]. Because the virtual clock only depends
on the number of instructions executed, it would hide the
VM suspends from in-VM timing measurements. How-
ever, applications with real time requirements would not
be able to use a virtual clock. Additionally, StopWatch
has a worst-case performance of 2.8x for workloads that
require heavy network usage, which might not be accept-
able for high performance workloads.

5.2 Scheduler-based Defenses

Recently, scheduling policies have been explored as an-
other means to prevent cross-VM, cache-based, side-
channel attacks. Varadarajan et al. proposed using the
scheduler to enforce each process to run for a minimum
run time before another process is allowed to run [12].
By forcing all processes to run for a certain amount of
time without being preempted, an attacker would obtain
less information from observing a process’ cache usage.

Adjusting the scheduling policy could prevent part of
our HI technique if the minimum run time is greater than



the VM suspend threshold. If that is the case, then pro-
cess scheduling cannot be used as one of the events ob-
served for the in-VM timing measurements. However,
there are many other events that occur during normal
OS operation that could still be observed, such as net-
work operations or memory allocation and deallocation.
An attacker could also artificially spawn processes that
purposely utilize specific OS operations to increase the
frequency of the events and improve the granularity of
the measurements needed for HI. Thus, changing the
scheduling policy may hinder HI, but it would not alto-
gether prevent it. Additionally, enforcing a minimum run
time could degrade performance because CPU-intensive
workloads would have to compete with less intensive
workloads.

5.3 Randomized Monitoring Interval

Because HI looks for regular VM suspends to determine
when monitoring checks occur, it may seem that sim-
ply randomizing the monitoring interval would prevent
HI. This is not the case because randomized intervals
have a lower bound on the duration between monitor-
ing checks. A patient attacker could use HI to establish
the lower bound on the monitoring interval and craft his
attacks around that lower bound. Thus, the randomized
monitoring interval forces the attacker to be inefficient,
but it cannot prevent the attacker from evading the VMI
system.

For example, consider a passive VMI system that polls
the guest VM on a randomized interval that lasts any-
where from 1 to 10 seconds, inclusive. Assuming that
the monitoring interval is a discrete random variable (i.e.,
the monitoring interval is an integer), then 10 monitoring
checks are expected to be observed before the smallest
possible interval is seen.

Even if the monitoring interval is a uniform random
variable (i.e., the monitoring interval can be a non-
integer value), the attacker can transform the problem
into the discrete value case by taking the floor of the ob-
served monitoring interval. In the case of an interval that
lasts anywhere from 1 to 10 seconds, flooring the value
leaves 10 possible values. Thus, the expected number of
observed monitoring checks before obtaining the mini-
mum is still 10.

The range of the random monitoring intervals is di-
rectly related to how difficult it is for an attacker to es-
tablish the minimum possible monitoring interval. Be-
cause security improves with a lower monitoring inter-
val/higher monitor frequency, the range of monitoring in-
terval values would remain small in practice to improve
security, but it would also be easier for an attacker to de-
termine the lower bound of the randomized monitoring
interval through HI.

We reconfigured our VMI monitor to use a random-
ized monitoring interval between 0 and 2 seconds that
would change after each monitoring check. We chose
this interval because it maintained the performance over-
head around 5% (based on the same UnixBench bench-
marks from earlier) and we expected the lower monitor-
ing intervals (sub-1s) to detect the attacks described in
Section 4. We performed each attack 30 times and found
that the reconfigured monitor was able to detect the large
file transfer 70% of the time, but it was unable to de-
tect the backdoor shell when quick-executing commands
were run (e.g., cat /etc/shadow).

We reason that the backdoor shell attack is not de-
tected because the command cycle executes quickly
enough to remain undetected for most of the intervals
from 0 to 2 seconds. We were surprised, however, that
some large file transfer attacks succeeded against the
randomized monitoring defense. Some of the large file
transfers went undetected because the randomized inter-
vals that triggered the chunk transfers in those cases were
long enough to avoid detection. However, the majority
of the large file transfers were detected with randomized
monitoring. Based on these tests, we argue that a ran-
domized monitoring interval is sufficient for preventing
the large file transfer attack, but not the backdoor shell
attack. Additionally, randomized monitoring does not
prevent HI from learning that there is a passive VMI sys-
tem in place, and HI can be used to learn the distribution
sampled by the randomized monitor.

5.4 Non-blocking Monitoring Checks

Another straightforward defense against HI is to make
the monitoring checks non-blocking (i.e., do not pause
the VM when performing the check). However, non-
blocking monitoring checks run the risk of allowing var-
ious events to pass undetected due to race conditions.
Previous work has looked at using non-blocking checks,
only pausing the VM if the non-blocking checks detect
an inconsistency [4]. Thus, the non-blocking checks are
not guaranteed to extract a consistent state from the VM,
resulting in a need to fall back to pausing the VM, which
would be detected by HI.

5.5 Proposed Defenses Against Hypervisor
Introspection

A virtual clock similar to the one implemented in [6]
would work best to prevent the timing measurements
needed for HI. A strictly virtual clock could not be used
for applications that need a real time clock. Thus, we
propose a hybrid real-virtual clock that skews only af-
ter a VM suspend. This could be achieved by changing



the clock function in the hypervisor after a VM entry oc-
curs. The virtual clock function would skew the clock
to catch up to real time before switching back to the real
time clock. By using the hybrid clock, there would be no
large gaps in the time due to VM suspends and the clock
would be near real time.

Instead of attempting to hide the VM suspends of a
passive VMI system, an active VMI system may be used
[9, 8]. Because an active VMI system only performs a
monitoring check after being triggered by some hard-
ware event, there is no way to hide activity from the
checks unless the malicious activity does not trigger the
hardware event. HI could be used to determine what
event triggers the VMI system, but there are many poten-
tial events, making determining the exact cause difficult.

6 Conclusion

We presented hypervisor introspection as a technique to
determine the presence of and evade a passive VMI sys-
tem through a timing side-channel. Through HI, we
demonstrated that hypervisor activity is not perfectly iso-
lated from the guest VM. Additionally, we showed two
realistic attacks in an insider threat attack model that uti-
lize HI to hide malicious activity from a realistic, pas-
sive VMI system. After developing HI, we also propose
that passive VMI monitoring has some inherent weak-
nesses that can be avoided by using active VMI moni-
toring. Thus, future research should continue to focus
on the development of active VMI monitoring systems
that do not poll the VM, and instead respond to specific
events.

References
[1] byte-unixbench - a unix benchmark suite - google project hosting.

Accessed: April 20, 2015.

[2] FRANKLIN, J., LUK, M., MCCUNE, J. M., SESHADRI, A.,
PERRIG, A., AND VAN DOORN, L. Remote detection of vir-
tual machine monitors with fuzzy benchmarking. SIGOPS Oper.
Syst. Rev. 42, 3 (Apr. 2008), 83–92.

[3] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In In Proc.
Network and Distributed Systems Security Symposium (2003),
pp. 191–206.

[4] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
osck. In ACM SIGPLAN Notices (2011), vol. 46, ACM, pp. 279–
290.

[5] KORTCHINSKY, K. Cloudburst. Tech. rep., Immunity, Inc., Mi-
ami Beach, Florida, June 2009.

[6] LI, P., GAO, D., AND REITER, M. Mitigating access-driven tim-
ing channels in clouds using stopwatch. In Dependable Systems
and Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on (June 2013), pp. 1–12.

[7] PAYNE, B. D. Simplifying virtual machine introspection using
libvmi. Tech. Rep. SAND2012-7818, Sandia National Laborato-
ries, September 2012.

[8] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.
Lares: An architecture for secure active monitoring using virtu-
alization. In Security and Privacy, 2008. SP 2008. IEEE Sympo-
sium on (2008), IEEE, pp. 233–247.

[9] PHAM, C., ESTRADA, Z., CAO, P., KALBARCZYK, Z., AND
IYER, R. Reliability and security monitoring of virtual machines
using hardware architectural invariants. In Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/IFIP International
Conference on (June 2014), pp. 13–24.

[10] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

[11] SUNEJA, S., ISCI, C., DE LARA, E., AND BALA, V. Exploring
vm introspection: Techniques and trade-offs. In Proceedings of
the 11th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (New York, NY, USA, 2015),
VEE ’15, ACM, pp. 133–146.

[12] VARADARAJAN, V., RISTENPART, T., AND SWIFT, M.
Scheduler-based defenses against cross-vm side-channels. In
23rd USENIX Security Symposium (USENIX Security 14) (San
Diego, CA, Aug. 2014), USENIX Association, pp. 687–702.

[13] VATTIKONDA, B. C., DAS, S., AND SHACHAM, H. Eliminat-
ing fine grained timers in xen. In Proceedings of the 3rd ACM
Workshop on Cloud Computing Security Workshop (New York,
NY, USA, 2011), CCSW ’11, ACM, pp. 41–46.

[14] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-vm side channels and their use to extract private keys.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 305–316.

[15] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in paas clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (New York, NY, USA, 2014), CCS ’14, ACM,
pp. 990–1003.


