
Multi-Organization Policy-based Monitoring
Mirko Montanari, Lucas T. Cook, Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign
{mmontan2, ltcook2, rhc}@illinois.edu

Abstract—The monitoring of modern large scale infrastructure
systems often relies on complex event processing (CEP) rules
to detect security and performance problems. For example, the
continuous monitoring of compliance to regulatory requirements
such as PCI-DSS and NERC CIP requires analyzing events to
identify if specific conditions over the configurations of devices
occur. In multi-organization systems, detecting these problems
often requires integrating events generated by different organi-
zations. As events provide information about the infrastructure’
internal structure, organizations are interested in reducing the
amount of information shared with external entities.

This paper analyses the problem of detecting policy violations
in network infrastructure systems managed by two organizations
(e.g., a cloud user and a cloud provider). We focus on CEP
monitoring systems and we introduce two protocols for selecting
the events to share between the two organizations to ensure
the detection of all possible policy violations. Our experimental
evaluation shows that reciprocal information sharing between the
two organizations significantly reduces the amount of information
to transfer. In our SNMP monitoring test case, we obtain a 80%
reduction in the information shared by any single organization.

I. INTRODUCTION

Policy-based event monitoring is often used in the man-
agement of large computer systems. Policies can identify
undesirable conditions that should be addressed by network
administrators. For example, in the area of network security,
regulatory policies such as NERC CIP [1], FISMA [2], PCI-
DSS [3] include requirements about the configurations of
network systems that ensure a minimum level of security.
A monitoring system can verify that a system is compliant
to such policies by integrating events containing information
about the system’s operations. When a network infrastructure
is managed by multiple organizations, the detection of such
undesirable conditions requires integrating events that organi-
zations might be reticent to share with external entities [4]. As
multi-organization systems are common in today’s infrastruc-
ture (e.g., cloud or critical infrastructure systems), reducing
the number of events to share can foster the adoption of
compliance monitoring and potentially increase the minimum
level of security in large systems.

This paper analyses the problem of sharing information
between two organizations to check the compliance of an
infrastructure to complex policies. We represent the problem
of compliance monitoring using Complex Event Processing
(CEP). In CEP, simple events describing the state of the system
are analyzed using rules and converted into complex events
which can represent policy violations. In multi-organization
infrastructures, these complex events need to be detected on

event streams generated by different organizations. Using our
approach we can detect such complex events while minimizing
the information shared between the two organizations.

Modern multi-organization systems already have a limited
ability of validating the compliance of their infrastructure to
policies. For example, in cloud computing, cloud providers
and cloud users share the burden of ensuring compliance to
security policies [5]. Cloud providers such as Amazon AWS
provide the ability of building services that are compliant
to regulations such as FISMA and PCI-DSS. Similarly, in
the area of critical infrastructure systems in the US, the
regional power companies that compose the power grid need
to show compliance to NERC CIP regulatory requirements.
However, in both cases, policies are simple and designed to be
validated independently by each organization. As the security
requirements become more complex, it is unclear that such a
separation is possible. Using our approach, administrators can
automatically identify which policies can be validated by each
organization and which events need to be shared to validate
the remaining policies.

We use a logic-based approach [13] to represent policies as
complex events. We use information about the completeness
of the information collected by the monitoring systems of
each organization to identify the events to share for de-
tecting all policy violations. We show that increasing the
amount of information shared by one organization reduces
the amount of information shared by the other. We define
different information sharing strategies suited for different
situations: an asymmetric pull strategy suited for when an
organization is subordinate to the other and willing to share
events unconditionally; and a symmetric push-pull strategy for
when the two organizations are peers and willing to reveal an
event only if it can be shown that such an event is important
for the overall compliance.

The contribution of the paper can be summarized as follows.
1) We define the problem of validating the compliance of a

multi-organization infrastructure to event-based policies.
2) We refine the concept of need-to-know and suit it to our

scenario of policy compliance monitoring.
3) We introduce two information sharing strategies for val-

idating compliance based on monitoring completeness
and on reciprocal information sharing.

4) We evaluate our information sharing strategies using
SNMP monitoring data and we show an 80% reduction
in the information shared by any single organization.

The rest of the paper is structured as follows. Section II

2012 IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-4735-0/12 $26.00 © 2012 IEEE

DOI 10.1109/POLICY.2012.18

70

2012 IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-4735-0/12 $26.00 © 2012 IEEE

DOI 10.1109/POLICY.2012.18

70

describes related research efforts in similar areas. Section III
defines our problem of multi-organization infrastructure policy
compliance. Section IV describes our information sharing
strategies. Section V shows our experimental evaluation. Fi-
nally, Section VI concludes our work.

II. RELATED WORK

The interaction between devices and services managed by
different organizations is a common aspect in computing. The
problem of sharing events between organizations has been
analyzed in the context of pub/sub systems. Most previous
work defines event confidentiality through explicit access
control policies. Using these policies, pub/sub systems decide
if an event can be forwarded to another organization.

In particular, Singh et al. [7] and He et al. [8] focus on
the healthcare domain. Singh et al. [7] introduce a system
where events are sent to other domains only when certain
conditions on the recipient are satisfied. Such an approach
enables the specification of explicit “need-to-know” policies
in event systems. For example, a pharmacist can receive
events about the existence of a prescription without receiving
information about the symptoms of the disease. In our case we
do not have an explicit “need-to-know” policy. Our approach
provides methods for computing such “need-to-know” from
a policy representing a complex event to detect. He et al.
[8] are interested in hiding specific private patterns from a
stream of events. They analyze the complexity of algorithms
that maximize the amount of public events published without
revealing private information. We are interested in computing
the information to share for validating policies.

In general CEP systems, Evans et al. [9] propose to tag
events with labels and use such labels to enforce access
control. The labels represent an explicit access control policy
that is not available in our setting. Denker et al. [10] analyzed
the tradeoff between need-to-protect and need-to-share through
the application of downgrading of data. Their model focuses
on continuous data provided by GPS systems. However, their
quantitative downgrading model is not suited for systems
where events are discrete. We provide methods for reducing
the amount of information shared while providing a complete
validation of policies over discrete events.

Other approaches in the area of security focused on defining
data anonymization strategies for performing a collaborative
section of attacks across several organizations. For example,
Lincoln et al. [11] introduce a technique for removing critical
data from network traces. However, these techniques are not
easily applicable to general CEP systems as they are strongly
related to the semantic of the data.

The idea to use knowledge about the completeness of
information for validating distributed queries locally was first
introduced by Denecker et al. [12]. Our approach builds on
top of such technique and extends it to queries that can be
partially answered locally and partially on a remote dataset.

III. MULTI-ORGANIZATION POLICY COMPLIANCE

The management of large-scale infrastructure systems of-
ten relies on policies to define undesirable conditions of

the systems. For example, in the area of security, PCI-DSS
policies define that critical services need to be protected by
firewalls; other policies might require anti-virus software to
be installed on every machine. More complex policies might
restrict the types of network services provided by a device
under certain network conditions. When such conditions are
identified, corrective actions are taken by operators to reduce
the exposure of the system to potential attacks.

CEP systems use events to represent infrastructure monitor-
ing information. Events are generated by different sources such
as SNMP monitoring agents running on devices, intrusion de-
tection systems (IDS), or applications. We use complex events
to represent policy violations: a violation is detected when a
specific sequence of events occurs in the system. For example,
we consider a monitoring system receiving events carrying
information about firewall configurations, about connections of
devices to networks, and about which devices are critical in the
current systems’ configuration. By analyzing event sequences,
we can detect when one of such critical devices is connected
to a network which is not protected by a firewall.

When multiple organizations are involved in the manage-
ment of an infrastructure, complex policies might require
integrating knowledge about events that occur in a portion of
the infrastructure managed by the other organization. For ex-
ample, a regulatory policy can specify that access to machines
storing restricted data should be allowed only to personnel
meeting certain criteria (e.g., export-controlled information in
the U.S. can be accessed only by citizens or U.S. residents).
In a virtualized cloud environment, admin access to the
Host VM storing the restricted data should be restricted as
well. Detecting violations to such a policy is possible only
if cloud providers and users share information about their
operations. In this paper, we provide a general mechanism to
identify which events should be shared across organizations
for identifying policy violations.

A. Event Model

We represent events and rules using a logic-based ap-
proach [13]. For infrastructure monitoring, we are interested
in reconstructing a view of the system’s operations. We use
Datalog predicates to represent events. We represent long-lived
states of the system (e.g., the fact that a connection exists
between two machines for a certain time) by associating a
time interval to each event: the start time and the end time of
the interval are the last two parameters of predicate. Events
can have an unspecified end time if they provide information
about states still holding when the event is generated.

We represent policy violations as complex events and
we define them using deductive rules expressed in Datalog
with negation. We store events into a Datalog KB, and
we identify complex events and violations by computing
a fixpoint model of the KB. For example, a policy can
specify that a violation occurs when a device running a
critical service connects to a server that is vulnerable. A
monitoring system can collect events about the software
running on a device (e.g, runs(host1, pid1, apache)), which

7171

software is critical (e.g., critical(apache)), the network
connections that are open by the given programs (e.g.,
connects(host2, pid2, host1, 80)), and the service running
on specific ports (e.g., binds(host1, pid1, 80)). As these
conditions are defined upon system states that need to hold at
the same time, we consider only events for which the end time
is not set. When the system enters in such a state, violations
can be detected immediately. We represent this by omitting
the time parameters in the event predicates. The overall rule
is represented as follows.

violation(X,SX)← runs(X,PX , SX),critical(SX),
connects(X,PX , Y,PORT),binds(Y, PY ,PORT),
runs(Y, PY , SY),vulnerable(SY)

(1)

More general temporal constraints are represented using
Allen operators [14] and time windows. The KB stores all
events which are potentially relevant according to the time con-
straints of the rules [6]. For example, if a rule has a 5 minute
time window, events older than 5 minutes are discarded.
Time relations are represented by predicates which parameters
are the timestamps of the events. For example, we can be
interested in generating a complex event indicating the name of
the software binding to a given port. We have two events, one
indicating that a software sw is running with PID pid on host

from time t1 to time t2 (i.e., runs(host, pid, sw, t1, t2) and
one indicating that a program with PID pid is binding to a port
port on the same host (i.e., binds(host, pid, port, t3, t4)).
We specify that the second event needs to occur during the
first event using the predicate during(t1, t2, t3, t4). In the
rule processing, we translate it into the set of constraints
t1 < t3, t4 < t2.

In our multi-organization scenario, we consider two or-
ganizations A and B. We indicate with KA and KB the
sets of events collected by the monitoring system of each
organization. We separate the rules defining complex events
into two sets. First, a set R that contains rules defining
complex events. Second, a set V that specifies complex events
associated with violations of a policy. We indicate with K a
KB containing the events, and we define a set K+ as the
fixpoint model of K with the rules R and V . If we indicate
with K = KA ∪ KB the set of events collected by both
systems, we say that a violation v exists in a system if K+ � v.
If v exists, we say that the infrastructure is not compliant to
the policy defining v.

Applying reasoning independently in each organization KB
leads to incomplete and incorrect results: necessary events
for the detection of a violation or events which presence is
necessary for compliance might be stored in the remote KB
and not considered by the local reasoning process. The lack of
completeness and correctness are a consequence of the closed-
world assumption used by Datalog reasoning. In our case, an
event not in KA can still be true in the system and stored
in KB . Guaranteeing correctness and completeness requires
identifying a set of events E that can be transferred from B

to A to ensure that the evaluation of the policy is complete.

Our model is based on a few simplifying assumptions. We
assume that the two organizations agree on the policies to
use for creating complex events and that the same events
and policies are used in both organizations. We assume
that organizations behave according to the protocols and do
not provide false information (i.e., honest-but-curious attack
model). Additionally, we assume that clocks are synchronized
so that event timestamps are comparable across organizations.
The first assumption generally holds for policies specified by
regulatory agencies, or when knowledge of policies themselves
do not provide competitive advantage to the other party. The
second assumption generally holds in organizations that are
collaborating for providing a service. Periodic auditing of the
infrastructure can be used to verify compliance to the protocol
at a later time. The third assumption generally holds if clocks
are synchronized to an external source (e.g., NTP) and if we
consider policies which are not strictly dependent on causality
and event ordering. In our experience, infrastructure security
policies specified in PCI-DSS or FISMA do not require strict
synchronization between events.

B. Policy Violations of Local Resources

An organization is generally interested in detecting policy
violations that relate to its own resources. For example, in
the case of a simple policy requiring a host-based IDS to be
running on each machine, an organization might be interested
in receiving violations only for the machines that it manages.
We associate each resource in the system to a domain. We
assume that each resource has a unique name (i.e., a URI). We
define a set U containing all resources in the overall system,
and its subsets DA and DB representing the sets of resources
owned or managed by each organization.

An organization defines the violations of interest by
specifying—in the policy itself—the domains over which
variables are quantified. For example, we can add domains to
the policy in Eq. 1 to specify that organization A is interested
in receiving all violations about its own machines as follows:

∀X ∈ DA,∀PX , SX , Y, PY , SY ,PORT ∈ U
violation(X,SX)← runs(X,PX , SX),critical(SX),
connects(X,PX , Y,PORT),binds(Y,PY ,PORT),
runs(Y,PY , SY),vulnerable(SY),

(2)

where X and Y are hosts; PX and PY are PIDs of
processes; SX and SY are identifiers of software packages; and
PORT is a network port number. We identify the interest in
violations involving resources of organization A by restricting
the value of the variable X to DA. However, we cannot restrict
the domain of other variables. For example, restricting the
domain of Y to DA would make the policy identify only
violations that involve connections between two hosts within
A. By restricting only the domain of the variables in the head
of the rule (i.e., in the violation statement), we ensure that we
find all violations in K+ that relate to resources in DA.

7272

C. Need-to-Know Events

For an organization A and a violation v, our approach is
based on identifing a set of events E ∈ KB so that KA∪E ∪
R ∪ V � v ⇔ K+ � v. That is, E contains the events that
should be shared by KB for detecting the violation. When this
set of events is minimal, we call it a need-to-know event set.

Events in such a set might carry less information than
the original events in KB and still be useful in determining
the presence of a violation. In particular, we can mask the
name of some resources mentioned in the statement. An
event relates n resources with each other under a specific
relation. For example, the event runs(host1, pid1, apache)
relates the resource host1 with the PID pid1 and with
the software apache. Often, we can detect a violation by
knowing that a relation exists between a resource and an
undefined resource with specific characteristics. For example,
we can consider a rule violation(P) ←runs(H,PID , P),
vulnerable(P) and assume that A maintains a list of vul-
nerable programs, while B provides the actual services. If A

knows vulnerable(apache), the only information missing
from B is the knowledge about the existence of at least
one host that runs such a service. As organization A is only
interested in knowing which vulnerable programs are run and
not the actual name of the host running them (i.e., the host
name is not part of the parameters of violation), we can
remove the host name from the events passed to A.

In first order logic we represent the existence of a host
running apache using existential quantification as in ∃H,P :
runs(H,P, apache). This statement expresses the fact that
runs is true for some value of H,P . Multiple pieces of
partial information can be related to each other to express
that two events are related to the same resource. For example,
we can express that some critical server runs apache using
∃H,P : critical(H)∧runs(H,P, apache). We define knowl-
edge units to be existentially quantified expressions in the form
∃V1, . . . , Vn : e1 ∧ . . . ∧ ek. In our Datalog framework, we
represent knowledge units using Skolemization: we substitute
the existential quantified variables with unique constants. As
Skolemization preserves satisfiability, if a violation exists, we
can find it in the Skolemized version of the system.

IV. INFORMATION SHARING ALGORITHM

For ensuring the completeness and the correctness of the
monitoring process, an organization needs to ensure that the
need-to-know events are among the events shared with the
other organization. However, identifying such a minimal set is
challenging, as it depends on the effect of each event on the
compliance state of the other organization. We have a tradeoff
in sharing: the more an organization shares information about
its events, the better the other organization can reduce the
events to share by better identifying the need-to-know events.

Without knowledge about any of other organization’s events,
all events relevant to the policies need to be shared. On the
other side, a complete knowledge of the other organization’s
events permits to select and share only the events that are
part of the minimal need-to-know set. We introduce two

intermediate approaches. Our first strategy uses the knowledge
about the completeness of the information collected by the
monitoring system of A to provide a first reduction in the
amount of information that B needs to share. Our second
strategy uses reciprocal information sharing from A to B to
further reduce the number of events shared by B.

The process of detecting violations is as follows. An organi-
zation A interested in detecting a set of violations VA analyses
its policies and its past events to create a set of persistent
queries P over the stream of events of the other organization.
Events in B matching queries are continuously sent back to
A. Collectively, these events form a set of events E′ that is
guaranteed to contain E.

A. Completeness of Local Information

The monitoring system of an organization focuses on ac-
quiring events from a specific set of resources: the resources
under the control of the organization. For such resources, we
might be able to acquire complete information. For example,
a monitoring system generating events overloaded(H) with
H ∈ DA is complete if it is monitoring the state of all hosts
in DA. In such a case, if a policy needs to match events
overloaded(H) with H ∈ DA, all the relevant events can be
found on the local knowledge base KA. Hence, for complete
statements, the closed-world assumption of Datalog holds in
the local KB and reasoning based on them is correct and
complete.

We model the completeness of knowledge acquired by the
monitoring system with a completeness KB (CKB). A CKB
describes patterns of events about which the local monitoring
system ensures that we have complete knowledge. A CKB
depends on the structure of the local monitoring system and
it is composed of two types of statements: simple complete-
ness statements and conditional completeness statements. An
example of CKB is shown in Fig. 1.

A simple completeness statement is a pattern defining events
for which we have complete local knowledge. If a policy is
looking for a certain pattern of events and such a pattern
can be described by a simple completeness statement, then
all events matching it can be found in the local KB. A
simple completeness statement is expressed by a statement
and by the domains of its variables. We indicate it with the
syntax ∀Vi ∈ D : st(V1, . . . , Vn). A statement bi(U1, . . . , Un)
matches a simple completeness statement st(V1, . . . , Vn) when
bi = st and for all i, 1 ≤ i ≤ n, domain(Ui) ⊆ domain(Vi).
For example, the simple completeness statement for the
overloaded event above is ∀H ∈ DA : overloaded(H).

A conditional completeness statement provides a restricted
notion of completeness of an event pattern. For example,
we can define a set of events critical(P) indicating that
a particular software P is currently critical to the organi-
zation operations. By using simple completeness statements,
we would be able to express that, given any program P , a
monitoring system has generated events indicating if such
program is critical to the system as a whole. However, most
monitoring systems would be able to decide only which

7373

∀X ∈ DA : overloaded(X)
∀X ∈ DA, P,PID ∈ U : runs(X,PID , P)
∀X ∈ DA,PID , P ∈ U :
critical(P)← runs(X,PID , P)

Fig. 1. Example of completeness KB for organization A containing simple
and conditional completeness statements

programs are critical to the local organization, and might not
be aware of the critical programs for the other organization. We
represent such restriction of knowledge by using conditional
completeness statements. In our example, we express that a
monitoring system generates such critical events only for
the programs that are currently running on its devices by spec-
ifying the following: ∀X ∈ DA, ∀P ∈ D : critical(P) ←
runs(X,P). Such statement indicates that, given a policy
containing an event pattern critical(P), we can consider
the pattern local only if the values of P are restricted to
the programs running on the machines in the domain DA.
In general, we represent conditional completeness statements
as ∀Vi ∈ D : st← c1, . . . , cm.

Given a policy, our information sharing strategies start by
performing a completeness analysis to identify the information
provided by the local monitoring system. The completeness
analysis takes a policy v ← p1, . . . , pn, a completeness
knowledge base CKB , and determines which statements pi
can be found completely on the local knowledge base Ki.
We call such statements local-complete. We indicate the set
of local-complete statements with SL, and use SR to indicate
the others. A non-empty SR indicates that events affecting the
result of the policy compliance process might be stored in KB.

For example, the following policy can be answered com-
pletely in the knowledge base subject to the CKB in Fig. 1.

∀M ∈ D1,∀S ∈ D

violation(M,S) ← overloaded(M),
runs(M,PID , S),critical(S).

(3)
The statements overloaded and runs are complete

because of the simple completeness conditions in
the CKB . The statement critical is complete
because of the conditional completeness statement
critical(. . .) ← runs(. . .). In this case, SR = ∅ and
SL = {overloaded(M), runs(M,PID , S), critical(S)}.

If the set SR is not empty we need to acquire all relevant
events from KB. We introduce two strategies for defining the
set of persistent queries that provide a complete and correct
detection of all policy violations. The first strategy, called
asymmetric pull strategy, creates a set of queries P from
the set SR. Such a set of persistent queries is independent
from the events contained in KA and does not provide B any
information about events. The second strategy, a symmetric
push-pull strategy determines the queries in P using both SR

and the current state KA of the system. Added or removed
events in KA can add or remove queries. Using the symmetric
strategy, A can reduce the amount of events requested from
B at the cost of revealing some of its internal state.

B. Asymmetric Pull Strategy

The first strategy uses the set SR to acquire from KB

all events relevant to the policy. If the statements in SR =
{p1, . . . , pn} are simple events, creating a set of queries
P = {(p1), . . . , (pn)} is sufficient for ensure completeness
and correctness: all events matching any of the statements
relevant for the policy that cannot be found completely on
KA are sent back to A. Such a process guarantees that all
events potentially relevant to the process are known by A.

When the statements in SR are complex events, we need
to analyze recursively the policy to identify all simple and
complex events that can contribute to it. In our proofs, we take
advantage of the connection between complex event process-
ing and relational algebra formalized by Bry et al. [13]. Given
a knowledge base K , we use the symbol σpi

(K) to indicate a
knowledge base obtained by selecting only statements in K for
which there exists a substitution of variables that unify with
the given statement pi. Given a set of statements B, we define
the extended set B′ by adding to the set B the statements dj
contained in the rules h← d1, . . . , dm where a pi ∈ B unifies
with h. We continue until we analyzed all statements in B′.

Lemma 1. We take a violation v, a rule v ← p1, . . . , pn, a
knowledge base K containing ground statements and the sets
of rules R. We consider a set B = p1, . . . , pn and its extended
set B′. We have that K � v ⇔ ∪bi∈B′σbi(K) � v.

Proof Sketch: Proving (⇐) is simple:
⋃

bi
σbi (K) is a

subset of K , so if it can prove v then K can prove v. The other
direction can be proven by contradiction: assume that there is
an event not in B′ that is necessary in the proof of v. This event
is either part of the policy or generated to contribute eventually
to the policy. However, events of this type are included in B′

by definition.

Theorem 1. Given two sets KA, KB , a rule V = {v ←
p1, . . . pn} with a body containing SL = {p1, . . . , pr−1}
statements and SR = {pr, . . . , pn} statements. Let S′R be the
extension of SR on the rules R.

For every v we have that (KA ∪ (
⋃

bi∈S
′

R
σbi(KB))∪R) �

v ⇔ K+ � v.

Proof Sketch: For P = SL ∪ S′R, the lemma implies
(
⋃

pi∈P
(σpi

(KA∪KB))∪R) � v ⇔ K+ � v. By definition of
completeness, for each pi ∈ SL, we have that σpi

(KA∪KB) =
σpi

(KA). Hence, we can rewrite the first part of the expression
as

⋃
pi∈P

σpi
(KA)

⋃
pi∈S

′

R
σpi

(KB) ∧ R. Because KA is a
superset of

⋃
pi∈P

KA, we can rewrite the entire expression
and obtain (KA ∪ (

⋃
pi∈S

′

R

(KB)) ∪R) � v ⇔ K+ � v

C. Symmetric Push-Pull Strategy

The second strategy uses the set SR and the events in KA

to create a set of persistent queries P selecting a narrower set
of events E′. This narrower selection is obtained by providing
to B some limited information about KA so that only events
that are potentially relevant to a violation are delivered to A.

Intuitively, the strategy is based on selecting the events
matching on KA the local part of the policy to determine

7474

a set of specific “missing events” that, if present in KB,
would create a violation. In particular, we consider the set
SL = {p1, . . . , pr−1} as a query L = (p1 ∧ . . . ∧ pr−1). For
each set of events matching the query, we substitute the values
of the variables (substitution γi) in the non-local statements
SR. After this process, we call statements in γi(SR) that now
have at least a ground parameter boundary statements. These
statements are submitted as persistent queries to organization
B. Events matching these queries are returned to A. A then
adds the new values for the variables to each substitution γi
and repeats the process until all statements are considered.

1) We take a policy v ← p1, . . . , pn. We assume that all pi
are simple events. We will see below how to generalize
it to complex events.

2) Starting from SR and SL of the policy, we compute
the set SB of statements in SR that share at least one
variable with statements in SL. SB is the boundary set
which represents the remote information about which the
local statements have partial knowledge. If we indicate
with XL the variables used in SL and with XR the
variables used in SR, we can determine the set of shared
variables XB = XL ∩XR. If XB = ∅ but SR �= ∅, no
variables are shared and we revert to the pull algorithm.

3) We construct a local query on KA by taking the con-
junction of the statements in SL and projecting the
result on the variables XB . We substitute the variables
in SB = {p1, . . . , pb} with the substitution γi and we
create a set of queries P = {(γi(p1)), . . . , (γi(pb))}.
The queries P are submitted to organization B.

4) When new events are receive from B, we add the results
in the knowledge base and create a new CKB′ where we
add a conditional completeness condition

∧
li∈SL

li →
pi for each pi ∈ SB where pl,i ∈ SL. We repeat the
algorithm with the new CKB′ until SR = ∅

If an event pi is a complex event, we add an additional step
to the process. We consider the rule heads that unify with pi,
and we apply the algorithm recursively to the respective rules.

The correctness and completeness of this process can be
shown with a few considerations. First, if we cannot find a
substitution γi satisfying SL on KA, we have that K+ �� v.
This comes from the local completeness of SL: events in SL

can be found only in KA or they do not exist in K . If we
have a substitution γi, we can consider it a partial match of a
rule. If we can find events matching the statements pj ∈ SR

in KB that are compatible with the substitution γi, then we
have found a set of events matching the condition of the rule.
By submitting the persistent queries we obtain such a result:
either the event occurs and it is delivered to A and added to a
K ′

A, or it does not occur. In either case, K ′

A is now complete
in respect to the new events. As we send queries for all γi,
we can add a new completeness statement

∧
li∈SL

li → pj .

Lemma 2. Given a policy v ← p1, . . . , pn, two sets
SL = {p1, . . . , pr−1} and SR = {pr, . . . , pn}, a set SB =
{pr, . . . , pb}, a completeness KB CKB, and a set of substi-
tution γi obtained by performing the query p1 ∧ . . . ∧ pr−1

on KA. We have that K ′

A = KA

⋃
pj∈SB

⋃
i σγi(pj)(KB) is

complete with respect with CKB ′ = CKB∪(
∧

li∈SL
li → pj).

Proof Sketch: For pj to be conditionally complete in K ′

A

we need to ensure that for all events matching pj for which
there are a set of connected events

∧
li∈SL

li, we have that
K ′

A � pj ⇔ K � pj . First, we show that if K � pj ⇒
K ′

A � pj . We have that for all γi such that γi(SL) ⊂ KA,
we submit a query to KB and we obtain γi(pj). In this way
we obtain all pj for which the condition

∧
li∈SL

li are true.
Similarly, K ′

A � pj ⇒ K � pj because the set of queries can
also identify the lack of the event.

Theorem 2. Given a policy v ← p1, . . . , pn, two sets SL =
{p1, . . . , pr−1} and SR = {pr, . . . , pn}, and a completeness
KB CKB , the push-pull protocol is complete, correct, and
terminates.

Proof Sketch: The core of the proof proceeds by in-
duction. Because of space restrictions, we provide only a
sketch. Each step of the protocol creates a set Si

B and acquires
the set of events

⋃
pj∈S

i
B

⋃
k σγk(pj)(KB) from KB . From

Lemma 2, the new knowledge base Ki
A is complete for

CKBi = CKBi−1 ∪ (
∧

lk∈SL
lk → pj). By the conditional

completeness, Si
L = Si−1

L ∪ Si−1
B (computed with the new

CKBi), which is used to compute a new Si
R and Si

B . By
induction, Si

L will increase in size by some nonzero amount
for each i since Si

B contains disjoint events by definition.
Similarly, Si

R will decrease in size. If Si
B �= ∅ during the

protocol, eventually Si
R = ∅ and the validation of compliance

is performed locally on Km
A , which is complete and correct

by definition. If at any point Si
B = ∅, the Ki

A is obtained by
running the pull algorithm, which is known to be complete
from Theorem 1. Since the universe of events is finite, Si

L is
finite and the protocol will eventually terminate.

V. EXPERIMENTAL EVALUATION

We perform a set of experiments to measure the ability
of our information sharing strategies to reduce the data sent
between the two organizations. We quantify the data by
measuring the amount of basic information units shared. An
information unit is a piece of information that associates a re-
source with a predicate. For example, an event computer(host1)
associates the resource host1 with the predicate computer.
We count this event as one information unit. A predicate
hasIP(host1, ip1) relates the resources host1 and ip1 to hasIP

and we consider it composed of two information units. This
measure is representative of the information shared and does
not depend on the specific definition of the event parameters.

We consider an event dataset collected by monitoring the
SNMP state of 10 research hosts for 30 days. These hosts
include a mix of laptops, development machines, and a web
server. We consider 14 types of messages providing infor-
mation about resources in the system. The dataset includes
information about 500 distinct running programs (associated
to 20000 PIDs), 70000 distinct network connections, 50 dis-
tinct network services, and 4100 IP addresses. We scale the

7575

dataset to represent a larger set of machines by constructing
probabilistic models of the events. The sequence of events
in each organization is created by generating events which
parameter values are taken from such distributions. Events are
timestamped and added to each knowledge base.

As the type of policies that can be specified in a real
system can vary widely depending on the interests of the
administrators, we evaluate the performance of our approach
using a wide range of policies. We randomly generate valid
policies which correlate types of events that are semantically
related to each other by sharing the values of some variables.
We ensure that the shared values are semantically meaningful
(e.g., the value for an IP in an event is correlated to the value of
IP on another event) by constructing a graph where resource
types are nodes, and event types are edges. Starting from a
resource type node, we randomly select an event and add it
to the policy. We continue until we reach a predefined length
of the policy. If we reencounter the same resource type node
multiple times, we randomly decide if the event needs to refer
to the previous resource (i.e., use the same variable name),
or if we expect the event to refer to a different resource (i.e.,
different variable names).

We create a completeness KB that is consistent with the
information collected by our SNMP-based monitoring system.
This completeness KB is shown in Table I. The KB of each
organization is populated by generating events according to the
dataset distribution. We track each resource used in the events
and assign it to either D1 or D2. The completeness KB allows
us to distribute events so that each KB contains the events that
would be collected by a monitoring system described by such
a completeness KB.

Domain Event
M ∈ DA TCPService(M,S)
M ∈ DA port(S, P) ← TCPService(M,S)
M ∈ DA UDPService(M,S)
M ∈ DA port(S, P) ← UDPService(M,S)
M ∈ DA TCPConn(M,C)
M ∈ DA LocalPort(C,PORT) ← hasTCPConn(M,C)
M ∈ DA RemotePort(C,PORT) ← hasTCPConn(M,C)
M ∈ DA LocalIP(C, IP)← hasTCPConn(M,C)
M ∈ DA RemoteIP(C, IP) ← hasTCPConn(M,C)
M ∈ DA software(C, SW) ← hasTCPConn(M,C)
M ∈ DA connState(C, ST) ← hasTCPConn(M,C)
.

TABLE I
PORTION OF THE CKB OF OUR SNMP-BACKED MONITORING SYSTEM.

First, we show that our solution limits the overall exchange
of information. Without the use of the completeness KB,
organization A acquires all events in organization B which
are relevant to any of the predicates in the rule. The first ex-
periment measures the fraction of information shared with the
increase of the length of the rule. The fraction of information
shared is measured as the ratio of information shared over
the information relevant to the rule (i.e., events which names
appear in the rule). Its results are shown in Fig. 2. When we
increase the length of the rule, the fraction of information

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

fr
ac

tio
n

sh
ar

ed
 IU

rule length

full B->A
pull B->A

pullpush B->A
pullpush A->B

min complete UI B->A
min partial UI B->A

Fig. 2. Information shared with the increase in the length of the rule.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 400 600 800 1000 1200 1400 1600 1800 2000

fr
ac

tio
n

sh
ar

ed
 IU

organization IU

full B->A
pullpush B->A

pull B->A
min complete B->A

min partial B->A
pullpush A->B

Fig. 3. Information shared with the increase in the number of events
generated by the two organizations. We fix the rule size to 5.

shared remains almost constant in all cases. For small rule
lengths, most of the information is found locally in organiza-
tion A. Using the completeness KB and a pull strategy, we
can reduce the number of events that need to be transferred
by not requiring information about the local portion of the
rule. In our SNMP case, this approach approximately halves
the number of events shared by organization B. The push-pull
strategy further reduces the amount of information to share. In
the SNMP case, we reduce the information sharing to about
20% of the information shared in a full sharing strategy (i.e.,
no completeness KB). To obtain this reduction, organization
A needs to share to organization B about the same amount
of information. The optimal amount of information shared
from B to A can be obtained by transferring all data from
organization A. We see that the minimal number of complete
events that needs to be shared to identify all violations is about
10% of the relevant information. If we share only partial events
(i.e., single information units), we can further reduce this
amount to about 1% of the relevant information. In this case, it

7676

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8

qu
er

ie
s

rule length

pushpull - 2000
pushpull - 1000

pushpull - 500
pull

Fig. 4. Number of persistent queries placed on organization B.

is sufficient for organization B to share enough information to
pinpoint which resource in A is in violation, without revealing
any of its own events that contribute to the actual violation.

The second experiment measures the fraction of information
shared with the increase in the amount of events considered
in the organizations. We consider a rule of length 5, and
we see that the fraction of information that needs to be
transferred remains constant and consistent with the previous
set of experiments. This data is shown in Fig. 3.

Next, we evaluate the overhead introduced by running
our information-sharing algorithms. We measure the average
amount of persistent queries that are placed on the organi-
zation B event stream for selecting the events to share with
organization A. For the case of the pull strategy, the number
of queries is proportional only to the length of portion of the
rule that cannot be evaluated locally. For the case of the push-
pull strategy, the number of queries depends also on the size
of the events in organization A that we consider. In the push-
pull case, the amount of queries is limited to a few hundred.
This data is shown in Fig. 4.

In summary, our experiments show that our techniques can
significantly reduce the number of events to be transferred
across the two organizations without significantly increasing
the overall load on the system.

VI. CONCLUSION AND FUTURE WORK

We introduce two solutions to the problem of validating
compliance of multi-organization systems to infrastructure
security polices. Our solutions are based on specifying the
completeness of the information collected by the local mon-
itoring systems of each organization. Our experiments using
SNMP data show that an approach that requires reciprocal
sharing of events obtains a reduction of 80% in the amount of
information shared by one organization when about 20% of
the information is shared by the other.

Future work should extend our approach in several ways.
First, we assume that organizations are honest-but-curious ac-
tors. While accountability can enforce such a behavior, future

work could extend our results to a more general adversary
model. Second, we assume that organizations are willing to
share all events that are relevant to the policies. However, in
some cases, organizations might prefer sharing only events
not critical to the organization security. Future work should
incorporate such sharing constraints in the framework. Finally,
future work should extend our approach to the general case of
n organizations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of
the paper. This work was partially supported by a research grant
provided by the Boeing Company. This material is based on research
sponsored by the Air Force Research Laboratory and the Air Force
Office of Scientific Research, under agreement number FA8750-11-2-
0084. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon.

REFERENCES

[1] North American Electric Reliability Corporation, “NERC
CIP 002-009,” NERC Tech. Rep., 2007. Available:
http://www.nerc.com/page.php?cid=2—20

[2] National Institute of Standard and Technology, “Federal Information
Security Management Act (FISMA) Implementation Project.” Available:
http://csrc.nist.gov/groups/SMA/fisma/index.html

[3] Payment Card Industry Security Standards Council, “Payment Card
Industry (PCI) Data Security Standard,” Tech. Rep. October, 2010.

[4] J. King, K. Lakkaraju, and A. Slagell, “A taxonomy and adversarial
model for attacks against network log anonymization,” in ACM
symposium on Applied Computing. ACM, 2009, pp. 1286–1293.

[5] Amazon Web Services, “Amazon Web Services : Risk and Com-
pliance White Paper,” Amazon AWS Whitepapers, December, 2011.
http://aws.amazon.com/whitepapers/overview-of-security-processes-2/

[6] K. Walzer, T. Breddin, and M. Groch, “Relative temporal constraints
in the Rete algorithm for complex event detection,” Proceedings of the
second international conference on Distributed event-based systems -
DEBS ’08, p. 147, 2008.

[7] J. Singh, L. Vargas, J. Bacon, and K. Moody, “Policy-Based Information
Sharing in Publish/Subscribe Middleware,” 2008 IEEE Workshop on
Policies for Distributed Systems and Networks, pp. 137–144, Jun. 2008.

[8] Y. He, S. Barman, D. Wang, and J. Naughton, “On the complexity of
privacy-preserving complex event processing,” in Proceedings of the
30th symposium on Principles of database systems of data. ACM,
2011, pp. 165–174.

[9] D. Evans and D. Eyers, “Efficient Policy Checking across Administrative
Domains,” IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY). IEEE, 2010, pp. 146–153.

[10] G. Denker, A. Gehani, M. Kim, and D. Hanz, “Policy-Based Data
Downgrading: Toward a Semantic Framework and Automated Tools
to Balance Need-to-Protect and Need-to-Share Policies,” in IEEE
International Symposium on Policies for Distributed Systems and
Networks (POLICY), 2010 . IEEE, 2010, pp. 120–128.

[11] P. Lincoln, P. Porras, and V. Shmatikov, “Privacy-preserving sharing
and correction of security alerts,” in USENIX Security Symposium.
USENIX Association, 2004, pp. 17–17.

[12] M. Denecker, A. Cortés-Calabuig, M. Bruynooghes, and O. Arieli,
“Towards a logical reconstruction of a theory for locally closed
databases,” ACM Transactions on Database Systems (TODS), vol. 35,
no. 3, p. 22, 2010.

[13] F. Bry and M. Eckert, “Towards formal foundations of event queries
and rules,” in Workshop on Event-Driven Architecture, Processing and
Systems, held at the International Conference on Very Large Data
Bases (VLDB), 2007.

[14] J.F. Allen, “Maintaining knowledge about temporal intervals, ”
Communications of the ACM, 26(11), 832-843. 1983

7777

