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Abstract. Wireless sensor networks (WSNs) promise the ability to
monitor physical environments and to facilitate control of cyber-physical
systems. Because sensors networks can generate large amounts of data,
and wireless bandwidth is both limited and energy hungry, local process-
ing becomes necessary to minimize communication. However, for reasons
of energy efficiency and production costs, embedded nodes have relatively
slow processors and small memories. This makes programming sensor
networks harder and requires new tools for distributed computing. We
have developed ActorNet, an implementation of the Actor model of com-
puting for sensor networks which facilitates programming by treating
a sensor network as an open distributed computing platform. ActorNet
provides a high-level actor programming language: users can write dy-
namic applications for a single cross-platform runtime environment with
support for heterogeneous and physically separated WSNs. This shields
application developers from some hardware-specific concerns. Moreover,
unlike other programming systems for WSNs, ActorNet supports agent
mobility and automatic garbage collection. We describe the ActorNet lan-
guage and runtime system and how it achieves reasonable performance
in a WSN.

1 Introduction

A Wireless Sensor Network (WSN) is a system of sensor nodes that collaborate
with other nodes through wireless communication channels. A typical sensor
node has one or more sensors, some data processing capabilities, a wireless com-
munications channel, and an independent power source. With the utilization of
the local processing capabilities and wireless communications, a sensor node can
autonomously perform its tasks or collaborate with other nodes. Due to these
unique features, WSNs have been proposed for applications such as environmen-
tal monitoring [33], structural health monitoring [8], intrusion detection [6], and
target tracking [11].
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WSN application development remains a complex and challenging endeavor.
The task is somewhat simplified by using a distributed middleware which can
provide services such as localization [27], time synchronization [34], and data
aggregation [40]. Despite the support offered by a middleware, programming
WSN still poses difficulties. This is because of several reasons: embedded code
is platform dependent; multiple applications cannot be concurrently executed;
applications cannot be dynamically loaded; multiple WSNs cannot interoperate;
and migration of processes is not supported.

Some of the problems we described above have been studied in the context
of open distributed systems. In an open distributed system, adding new compo-
nents may be added, existing components may be replaced, and interconnections
between components may be changed. A platform which supports an open dis-
tributed largely should allow such evolution without impacting the functioning of
the system. The actor models provides a suitable for building open distributed
systems: it has a notion local components and interaction restricted through
specified interfaces. Interaction in the actor model is based on asynchronous
message passing; this prevents the direct manipulation of the internal state of
one component by another.

In this paper, we implement a variation of an actor model, called ActorNet [2]
to address some challenges in WSN programming. ActorNet provides a uniform
computing platform for mobile agents, which we call actors [5]. ActorNet builds
a single virtual network by interconnecting physically separated WSNs over the
Internet. This virtual network removes the difficulties in interoperating multiple
WSNs together. For example, an actor can track a seismic event while migrat-
ing thousands of miles through the Internet. The homogeneity of the computing
environments provided by the interpreter layer of ActorNet simplifies interoper-
ation. Because the underlying platform differences and the network differences
are hidden from the actors, the same actor program can continue its tasks while
migrating between different ActorNet platforms, e.g. a Mica2 sensor node and a
PC. The ActorNet implementation is available with an open source license1.

ActorNet consists of a language interpreter and a runtime system. The actor
language supports powerful operations such as high-order functions, reflection,
garbage collection, and tail recursion removal. The specific details of the un-
derlying hardware and the operating system are hidden behind the high level
operators of the actor language. The uniform computing environment also sim-
plifies the application developments greatly as it precludes the need for different
variations of programs for different platforms.

ActorNet runtime provides with a library of services such as virtual memory,
application level context switching, garbage collection, and a communication
stack machine. These services not only secure the necessary resources for Actor-
Net applications to run, but also enables ActorNet, as an application running
on a sensor node, to coexist harmoniously with other native applications.

Unlike other WSN mobile agent frameworks based on a bytecode virtual ma-
chine [17], using an interpreter can greater power and flexibility. In particular,

1 http://osl.cs.illinois.edu

http://osl.cs.illinois.edu
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the ActorNet interpreter facilitates reflective capabilities of the language. To sup-
port actor migration, we uniformly represent the state of an actor as a pair of a
continuation [47] and a value to be passed to the continuation. This state rep-
resentation, along with the reflection capability of the actor language (cf. [53]),
endows actors with the voluntary migration capability. The mobility of actors
enables fine-grained network reprogramming. The actors run only at required
nodes and their migration does not disrupt the continuation of other actors’
computation.

Organization of the paper. Section 2 discusses the problems we are trying to
address. Section 3 describes our approach to addressing the problems identified.
Section 4 provides a complete ActorNet example application to illustrate our
approach. The detailed syntax and the semantics of ActorNet language is de-
fined in Section 5. Section 6 describes the implementation of the interpreter and
the runtime system of ActorNet. In Section 7 we evaluate the performance of
the system. Section 8 examines the application of ActorNet mobile agents as the
foundation of a macroprogramming system. Finally, we discuss the unique con-
tributions of ActorNet in the context of related work on mobile agent systems
and network reprogramming in Section 9. Concluding remarks and discussion of
future work follow.

2 Motivation

Our research is motivated by our experience in building WSN applications which
continues to require embedded systems programming and networking expertise.
Domain experts are not usually embedded systems experts, as pointed out in [42].
We believe this has slowed down the adoption of WSNs. The difficulties can be
summarized as follows:

– Embedded code is dependent on the specific platform used. Thus embedded
systems programmers have to be familiar with the intricacies of the hard-
ware, operating system, and programming language used for the particular
embedded hardware and software that they are using. Moreover, it is diffi-
cult to adapt applications to new sensor platforms, even as new platforms
are being continually developed.

– Interoperation of multiple, possibly heterogeneous WSNs is not supported.
Many large scale events cannot be covered by a single WSN but require
multiple WSNs; for example mapping the temperature of a city or recording
seismic data observed across the globe may be facilitated by the cooperation
of multiple WSNs. However, many WSN applications are designed only for
a single or a handful of predetermined groups of sensors.

– It is difficult to run multiple applications in a WSN. As we move from dumb
sensors to smart sensors with on board processing capabilities, embedded
computers will be used to multitask. For example, it may process readings
from different sensors and adapt the behavior of these applications based on
the readings.
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– Remote reprogramming of sensors is tedious. Because application images are
preloaded on the nodes and the message formats are predetermined, a WSN
cannot respond to dynamically changing requirements:
• an application’s coverage is bound to a predetermined set of sensors as
nodes;

• new nodes cannot dynamically join a WSN unless they are already pro-
grammed to do so; and,

• even when applications potentially of interest are known in advance,
given that memory on an embedded node is scarce, it is impractical to
preload less-frequently used applications on a large number of nodes.

One approach to addressing the problem of dynamically changing require-
ments is to support remote reprogramming. Several network reprogramming sys-
tems have been developed including Deluge [22], over-the-air programming of
Contiki [15], SOS [20], and Trickle protocol of Mate [31]. These systems install
the whole image or replace some of the modules remotely injected from a central
node. However, unless remote reprogramming supports fine grained targeting
and inter-operation of heterogeneous application images, energy consumption
considerations severely limit its usefulness.

A different remote evaluation approach has been proposed by Stamos et al.
Instead of the traditional client/server architecture, server nodes in this remote
evaluation framework provide a set of generic operations which allow remotely
transmitted programs to run on a server using the generic operations and return
the results [45]. The remote evaluation approach solves the scalability problem
and can potentially reduce the communication load as well. However, some tasks
can be better executed in a framework that not only allows program to be
copied but migrates its state. Migrating an actor’s state allows it to continue a
computation on the destination platform. Actor migration enables to duplicate a
program over the entire network. Moreover, the ability to migrate continuations
can reduce the code size that needs to be migrated.

One of the design principles of a WSN is to build a large scale distributed sys-
tem using cheap, even disposable, hardware. Naturally, problems arising from the
limited resources follow. For example, Mica2 [13] node has only 4 kB of memory,
which is a very tight limit even for a single application. To make matters worse,
TinyOS [50], an operating system for the Mica nodes, does not support dynamic
loading and unloading of applications. That is, the 4 kB of memory must be
shared by all applications shipped on a node. These constraints pose a big im-
pediment to the development and the maintenance of WSN applications. Some
embedded computer operating systems support dynamic module/application
loading: these include Contiki [15], Mantis [9], and SOS [20]. TinyOS, a pop-
ular operating system for WSNs, does not. According to a survey, TinyOS has
the largest support community and the largest number of publications among
operating systems for WSNs with 81% [29]. For this reason, ActorNet is imple-
mented primarily targeting TinyOS; however, we believe porting ActorNet to
other platforms may not be difficult: only a small fraction of the runtime sys-
tem code is platform-dependent. ActorNet already provides support for two very
diverse platforms: TinyOS on Mica2, and Linux on PC.
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3 ActorNet Design

We now describe the overall design of the computing environment and highlight
the issues that need to be addressed in its implementation. The principal features
ActorNet provides are:

– A light-weight actor (mobile agent) programming language for WSN systems
which powerful programming constructs such as higher-order functions, re-
flection, tail recursion removal, and garbage collection.

– Support for multiple concurrently actors which can execute on a node with-
out interfering with each other.

– A library of useful services, including a virtual memory space on embed-
ded nodes to dynamically load and run non-trivial actor programs and an
application-level context switching mechanism to enable blocking I/O and
fair scheduling.

– A virtual network platform that encompasses multiple physical WSNs and
PC platforms without exposing the hardware and networking differences to
the application.

3.1 Network Architecture Design

Simplifying the interoperation of multiple physically-distributed WSNs is one
of the design goals of ActorNet. Toward this goal, ActorNet builds a single vir-
tual computing environment for mobile actors that encompasses multiple WSNs.
Specifically, this environment is constructed by interconnecting the base sta-
tions, or gateway nodes, of WSNs via an Internet overlay. Using the virtual
environment, differences in the communication network as well as the under-
lying computing platform can be obscured from application-level actors. Being
exposed to these differences, an actor program would have to prepare different
sets of handlers for each hardware configuration, which results in duplicated
code, unnecessarily complex implementations, and large application code sizes.

The proposed virtual environment spans two tiers of networks: an ad hoc wire-
less network and the Internet, as can be seen in Figure 1. These two network
tiers feature vastly different topology, bandwidth, protocols, and performance
characteristics. In ad hoc wireless networks, messages are locally broadcast to a
node’s neighbors, whereas most of the Internet consists of wired, point-to-point
connections. The bandwidth differences between the two network types can be
huge. Typical RF network devices used to interconnect wireless sensors can com-
municate at speeds ranging from 38.4 to 250 kbps, for 802.15.4 devices. However,
in practice the communication speeds are much lower. For example, a 64-node
WSN deployed on the Golden Gate Bridge took 12 hours to transport 90 sec-
onds worth of high-frequency vibration data [26]. Finally, there is a multiple
order of magnitude difference in performance of the hosts comprising the net-
work: personal computers (PCs) and servers connected to the Internet typically
have processors running at several GHz, whereas sensor nodes feature proces-
sors with maximum speeds of several MHz. These differences make developing
applications that span both network types a challenging endeavor.
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Fig. 1. ActorNet network architecture: the forwarder turns the Internet into a single-
hop, broadcast overlay network, and the repeaters act as a bridge between it and the
ad hoc wireless networks. This network architecture obscures the underlying network
differences from the actor programs.

To hide the heterogeneity of the network from the actors, we represent the
Internet a single hop broadcast network from the actor’s viewpoint. Specifically,
any messages transmitted from a gateway node connected to the Internet are
forwarded to the other gateway nodes. In view of this network topology, the dif-
ference between the ad hoc network and the Internet is hidden from the actors.
All ActorNet platforms connected to a forwarder node over the Internet can be
regarded as a single hop neighbor. This virtual single-hop network extends the
range of mobile actors to the global scale. That means, to an actor, a migration
of thousands of miles through the Internet is no different from a local migration
between two neighboring sensor nodes. As a solution for the network bandwidth
differences, ActorNet provides a packet buffer at the gateway nodes, which com-
pensates for temporary differences in the throughput of the two networks.

One of the merits of this network design is that existing agent coordination al-
gorithms can be easily adopted. For example, ant algorithms use a reinforcement
based on (computational) pheromones to guide the agent behavior. A notable
example is the ant-based routing algorithm [14], which builds robust, adaptive
end-to-end routes. In sensor networks, due to the intermittent nature of network
connectivity, dynamic routing algorithms based on end-to-end route quality are
preferable to static routing tables. With network design, building message routes
across the WSNs does not differ from building them within a WSN.
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3.2 Actor Language Design

The ActorNet programming language uses the syntax of the programming lan-
guage Scheme [1], extended with actor operators. In this respect, it is similar to
the actor language Rosette [51]. As mentioned earlier, the ActorNet program-
ming language simplifies programming WSNs. This is accomplished by:

Platform independent execution: ActorNet naturally shields the platform
differences from actors by functioning as a virtual machine.

Uniform messaging: Communication is platform independent: a simple send
operator is used to send any type or volume of data to any destination node,
even if the destination actor resides in a different WSN connected via an
Internet gateway.

Continuation Passing Style (CPS) programming: The state of an actor
is represented as a pair consisting of a continuation—a single parameter
function representing the rest of the program [47], and a reduction expression
whose value is to be passed to the continuation. Applying the value to the
continuation produces a new actor state, and an actor repeatedly generates
new states as it computes. Continuations allow a programmer to capture,
send, and execute future computations, similar to the concept of future type
message passing in the ABCL/1 concurrent programming language [56].

Actor Mobility: Because an actor program is represented as a data type, it is
platform independent and can be migrated as source code.

Concurrency: Multiple actors may be concurrently executed on a single Ac-
torNet node.

Note that the CPS representation of an actor’s state supports reflection over
the current state. This enables actors to migrate themselves at any stage of
execution–by accessing the continuation and the value to be passed to the con-
tinuation, and send these to a new platform. To make the migration happen,
an ActorNet platform needs to be ready to receive an actor’s state and let
it continue its execution. For this purpose, each ActorNet platform features a
special-purpose built-in actor which receives such messages and creates a new
actor to evaluate the message content. During the evaluation, the new actor’s
state is replaced with the actor state in the message.

3.3 ActorNet Platform Design

Running ActorNet platforms on sensor nodes presents its own unique difficulties.
In this section, we describe the concerns in developing ActorNet platforms on
extremely resource-constrained sensor platforms, such as Crossbow Mica2 sensor
nodes (described below). Note that ActorNet would be much easier to implement
on more powerful sensor platforms; we use a the Mica2 to demonstrate that our
approach can be supported on a broad range of WSN devices.
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Mica2 and TinyOS
The Crossbow Mica2 mote is built on an 8MHz 8-bit ATmega128L CPU with
4 kB of SRAM, 128 kB of program flash memory, and 512 kB of serial flash [13].
The 4 kB SRAM space is shared by the stack, heap, and static variables of
all TinyOS components and applications. This, in turn, places a tight memory
constraint on applications. Application code, large constant tables, and log data
are loaded in the flash memory units. As an application, ActorNet also has to
share this 4 kB space, but because its data is actor programs, the small memory
is the more restrictive to ActorNet compared to other applications. To address
this fundamental problem, we designed a 56 kB virtual memory formed at the
512kB serial flash memory. Usually, flash memory read operations are fast, but
write operations are slow and expensive in terms of energy consumption. On
Mica2 it takes ∼15ms to write a 128-byte page to flash.

Mica2 hardware is equipped with a CC1000 RF transceiver for single-duplex
wireless communication. At the bit-level, TinyOS uses Manchester encoding [48],
achieving a theoretical raw throughput of 38.4 kbps. In practice, a Mica2 node
is able to transmit approximately 20 34-byte packets per second. Internally,
TinyOS employs a carrier sense multiple access (CSMA) medium access control
protocol called B-MAC [41], together with SEC-DED encoding and a 16-bit
cyclic redundancy code (CRC) on each packet, which allows receivers to detect
data corruption. In addition to the wireless transceiver, Mica2 units feature an
RS-232 serial interface [46], allowing communication with PC-based applications
through an interface board.

TinyOS is a lightweight operating system for the sensor nodes written primar-
ily in NesC [19]. The system is structured as a collection of modules which are
statically linked together based on a component specification. The modules con-
sist of statically-allocated variables and three different types of program blocks:
command, event, and task. Service requests are typically split-phase: a caller in-
vokes a command, which returns quickly; once the request is satisfied, the service
calls back to a corresponding event procedure in the caller. This communication
pattern enables a higher application throughput as compared to simple blocking
I/O. Long-running procedures are explicitly executed as tasks, which are sched-
uled in series and run to completion. Since only interrupts can preempt tasks or
lower-priority interrupt handlers, if multiple processes must be run concurrently,
they have to be explicitly segmented into a sequence of tasks.

In order to enable the mobility of actors, ActorNet supports dynamic loading
and unloading of actor programs. Because an actor may allocate and deallocate
memory during its computation, the dynamic unloading module must reclaim all
the dangling memory made by the unloaded actor. As a general solution to this
problem, we added a Garbage Collection (GC) mechanism to ActorNet. The GC
mechanism is based on the mark and sweep GC algorithm, which is effective but
induces an unpredictable latency with a large mean and a large variance. While
the GC is running, most of the services are stopped, which can be critical for
periodic sampling or communication services. The large variance in the latency
also prevents an efficient task scheduling. As a remedy to these limitations, we
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foo() {
int a;

...

read();

...

}
bar() {

int a;

...

foo();

...

}

int foo a;

int bar a;

prefoo() {
...

preread();

}
postfoo() {

postread();

...

}

prebar() {
...

prefoo();

}
postbar() {

postfoo();

...

}

Fig. 2. Code examples with (left) and without (right) blocking I/O. read makes an
I/O operation.

developed a multi-phase GC algorithm. Assuming that the virtual memory is
lightly loaded and thus the mark phase is fast, we divided the sweep phase into
multiple sub-phases and deallocated only fractions of the memory on each step.
This partial deallocation reduces the slow flash memory write while maintaining
the page hit ratio high. The multiple phase GC algorithm also reduces the mean
and the variances of the GC latency, which results in a better scheduling.

Note that this garbage collection is constrained to local node resources, since
the overhead costs involved with implementing distributed GC in a resource-
constrained sensor network are prohibitive. In particular, garbage collection of
actors is complicated by the fact that not only references from reachable actors
have to be considered, but inverse references from potentially active actors must
also be considered [52].

TinyOS achieves concurrency among applications through split-phase pro-
gramming. More specifically, most of the I/O operations are supported only
in the split-phase style. Although this style of programming increases through-
put, the limited support of the blocking I/O makes it difficult to develop and
maintain applications. For example, let us consider the code in Figure 2. The
code on the left side is written with blocking I/O: bar calls foo and foo calls
read which performs an I/O. Without blocking I/O, we must split the functions
as in the right side of Figure 2: an application calls prebar and arranges an
I/O completed event handler to call postbar. The problem is that every possi-
ble function call chain reachable to read should be divided into two parts like
Figure 2. Furthermore one cannot use stack allocated local variables across the
divided functions. That is, all such variables must be declared as static variables
which take up space even after the functions are returned. The problem is even
graver in ActorNet: any memory access can make a page fault which leads to a
flash memory access, an I/O operation; split phasing on every memory access
is practically impossible. To overcome these problems, we implement an appli-
cation level context switching mechanism. The mechanism enables ActorNet to
return control to TinyOS and regain control later with the same register, flags,
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and stack configurations. Using this mechanism, ActorNet enables blocking I/O
for its actors. This mechanism also provides a seamless concurrent execution
of ActorNet alongside other applications. The context switching mechanism is
developed at the application layer to reduce the difficulty of porting it to other
platforms.

The state representation of an actor can be structurally complicated. Specifi-
cally, there can be loops or multiple references in the list structure. Thus, sending
and receiving the list data involves serialization and deserialization. One of the
concerns in sending a message is that the message is locally broadcast to all the
neighbors of the sender. Because there is a single sender with multiple receivers, it
is computationally beneficial to allow higher computational load at the sender in
order to lower the computational load at a receiver. To achieve this, we design
a simple communication stack machine: a sender handles all the complexities
of communication and makes a stream of data mixed with stack manipulation
commands so that receivers can restore the data simply by running their stack
machine following the commands.

4 Example

We provide a complete example application to illustrate the design of the Actor-
Net platform before going into the details of the actor language and the platform
implementation.

Consider an actor migrating through a WSN in search of a local temperature
maximum—a typical environmental monitoring task. Searching for a local max-
imum point is a reasonable monitoring task for a WSN: for example, to detect a
heat sink or a gas leak, one may want to find the local maximum point. An actor
in this example autonomously selects its migration path based on the environ-
mental information and reports the final result to a base station. The example
demonstrates the high level of abstraction for WSN application development
provided by ActorNet.

The steps in our maxima search actor’s execution are as follows:

1. An actor A broadcasts to its neighbors a simple actor which measures the
temperature at a node and sends back the result.

2. A determines the neighborhood maximum temperature and migrates itself
to the corresponding node. When it migrates to another node, A records
its point of origin so that it can forward the maximum temperature reading
back along the path it followed.

3. When it arrives at a point with maximal temperature (i.e., where all the
neighbors report a lower temperature), A migrates back to the base station.
Upon arrival at the base station it prints out the temperature value. (Note
that more information could easily be maintained and reported).

Because of expressiveness of ActorNet, we do not need any platform or OS
support for multi-hop message routing. An actor locally broadcasts and moves
itself to its neighbor with the greatest temperature, while constructing the return
path as it migrates from node to node.
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1 (rec (move path temp) ;;return path, max temp
2 (seq

3 (send (list 0 measure (io 0))) ;;broadcast measure actors to neighbors
4 (delay 100) ;;wait for 10 seconds
5 ( (lambda (maxt)

6 (par

7 (cond (le (car maxt) temp) ;;if it arrives at a maximal point
8 (return migrate path temp) ;;then return the temp along the path
9 (move ;;else move to the highest temp. node
10 (cond (equal path nil)

11 (cons launch path)

12 (cons (io 0) path))

13 (migrate

14 (cadr maxt) ;;node id
15 (car maxt)))) ;;temp
16 (setcdr (msgq) nil))) ;;reset msgq
17 (max (cdr (msgq)) (list 0 0))))) ;;find the max temp. and the node

Fig. 3. An actor program that migrates to a point of maximal temperature in a WSN
and returns the temperature back to the base station

Consider a migrate function which makes an actor move to another node
and then continue its execution. Recall that the state of an actor is a pair of
a continuation and a value to be passed to the continuation. In ActorNet, an
actor can easily migrate itself to a neighboring node, using the explicit state
representation and sending its current continuation. There is a launcher actor
running on every ActorNet platform that receives the messages sent to it as
programs and evaluates them. The entire actor migration process is implemented
using this very short migrate function:

1 (lambda (address value) ;; migrate
2 (callcc

3 (lambda (cc)

4 (send (list address cc (list quote value))))))

The code for the temperature-search example, which utilizes this migrate
function, is listed in Figure 3. The precise syntax and semantics of the language
will be described in the next section, but this code excerpt illustrates the general
structure of an ActorNet program and the compactness of the actor language.
Note that a relatively complex application is implemented in under 20 lines of
code.

The program first broadcasts a measure actor that reads a temperature at a
remote node and sends back the reading. The sender then waits for 10 seconds
and then checks its message queue, msgq, for the measurement. No other work
is needed for synchronization. The measure actor can be encoded simply as

1 (lambda (ret) ;;measure
2 (send (list ret (io 1) (io 0)))).
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The (io 1) system call returns a temperature reading and the call (io 0) re-
turns the unique node identifier. A launcher actor running at a remote platform
will evaluate this function with the return address, which is the (io 0) function
call of the 3rd line of Figure 3. Although the measure actor in this example is
simple, it could be an arbitrarily complex function. That is, an actor can easily
distribute a complex piece of its code to run in other nodes and later collect
the results in the form of messages. This example demonstrates the versatility
of ActorNet as a concurrent computing environment for multiple actors.

Returning to Figure 3, the move function takes a return path and the current
maximum temperature reading as its parameters. Migration occurs after eval-
uating the second parameter. Line 9 shows how the actor migrates to another
node: it first appends its node id—(io 0)—to the return path and then migrates
to the node where the greatest temperature was read. When the actor arrives at
a point of the maximal temperature, it returns the temperature value using the
return function, listed below.

1 (rec (return migrate path temp)

2 (cond (equal path nil)

3 (print temp)

4 (return migrate (cdr path)

5 (migrate (car path) temp))))

The return function is similar to move. It migrates across the nodes along the
return path.

Note how easy it is to write a mobile agent program using the ActorNet
platform. By providing simple-to-use and high-level features, ActorNet enables
a rapid development of powerful WSN applications. Furthermore, because mobile
agents operate autonomously, they can be used in resource-constrained sensor
networks that do not provide many supporting services.

Finally, it is worthwhile to mention that this program does not require any
routing services: the actor follows a steepest temperature ascent path, and it also
maintains a return path by itself. Also note that the application does not require
collecting the temperature reading from all nodes to a central node (usually
done by a data dissemination process); instead the actor collects and processes
the information while migrating in a sensor field. Even considering the data
aggregation service, the saving in the amount of communication by the mobile
agent approach is very significant.

5 Actor Language

We now formally describe the syntax and the semantics of the ActorNet actor
language in rewriting logic [35, 38]. One of the merits of using rewriting logic
is that it describes both the syntax and the semantics of a language together.
The syntax is defined by its mix-fix definition of operators and the semantics is
described by the deductions rules of a rewriting theory. Another benefit of using
rewriting logic is that the descriptions are executable by rewriting engines, such
as Maude [35].
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5.1 Rewriting Theory

In rewriting logic, a signature Σ comprises a set S of sorts, a partial order
relation ≤ of subsorts, and a S∗ × S indexed set of operators. A Σ-algebra
AΣ is an algebra with an S indexed family of sets {As : s ∈ S} such that
As ⊆ As′ if s ≤ s′, and constants c ∈ As for each operator c∅×s of Σ, and
functions f : As1 × · · · ×Asn → As for each operator fs1,...,sn×s of Σ. An inter-
esting Σ-algebra is the term algebra TΣ whose terms are c ∈ As for c∅×s, and
f(t1, . . . , tn) ∈ As for fs1,...,sn×s, where ti is a term in Asi . The term algebra is
a minimal Σ-algebra that has Σ-homomorphism to all Σ-algebras. The mix-fix
operator definition of Maude eases defining the syntax of a language. However,
for simplicity, we use the BNF notation where possible. For example, we write
P ::= 〈 V , V 〉 instead of 〈 , 〉 : V × V → P for pairs.

An equational theory is a pair (Σ,E) of a signature Σ and a set E of possibly
conditional equations on the terms of TΣ . We say that a Σ-algebra AΣ is a model
of a theory (Σ,E), and write AΣ |= (Σ,E) if AΣ satisfies all equations in E.
An equation e is a theorem of (Σ,E) if all models of (Σ,E) satisfy e. Theorems
can be proved by applying the deduction rules of reflexivity, symmetry, transi-
tivity, congruence, and modus ponens. Theorems can also be simply proved by
applying equational rewriting under the termination and confluence conditions.
The equational theory can be generalized in membership equational logic, where
a kind is given to the equivalent class of sorts related by ≤, and the operators
are indexed with kinds. Sorts are given to the terms through the membership
axiom.

A rewriting theory is a four-tuple IR = (Σ,E,L,R), where (Σ,E) is an equa-
tional theory and R is a set of labeled rewrite rules whose labels are from L. IR
describes the behaviors of a transition system, where the equivalent classes of
terms represent the state of the system and the state transitions are described
by applying the inference rules of reflexivity, transitivity, congruence, and re-
placement. A more detailed discussion of rewriting logic is presented in [35].

5.2 Syntax

In our actor language, everything is a value sort: numbers, symbols, pairs, lists2,
and all ActorNet program elements, such as actor programs, actor states, and
actor configurations are values. Because these program elements have distin-
guishable structures, specific sorts are assigned to them through membership
axiom.

Actor language has only one kind that all sorts belong to. Thus, in this paper,
we drop the index from the sorts. Some examples of the sorts in S are V for values,
which is the supersort of the other sorts, N for numbers, S for symbols, P for
pairs, L for lists, E for expressions, R for environments, A for actor states, K for
continuations, M for actor messages, and C for actor configurations. For each

2 Lists are nested form of pairs ending with an empty list. However, because lists
simplify the descriptions, we gave them a separate sort.
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non-string sort T, we assume that there is a sort T ∗ ∈ S for the string of the
sort. For example, N∗ ∈ S is a string of numbers. In this paper, we denote the
variables of a sort with a small letter of that sort. We also suffixed the variables
with s for their string sorts.

Examples of the constant operators for symbols (∅ → S) are lambda, rec,

cond, nil. In this paper, we use the typewriter style font for the symbols. The
constructor for pairs is P ::= 〈 V , V 〉 and the constructor for lists is L ::= (V∗).
A list indeed is a nested form of pairs. Thus, we equate them so that these terms
belong to the same equivalent class.

〈 v , (vs) 〉 = (v vs).

The expressions E of the actor language have the well-known S-expression
syntax defined as follows.

E ::= N | S
| (lambda (S∗) Ebody)
| (rec (S S∗) Ebody)
| (cond Etest Etrue Efalse)
| (quote V)
| (Eop E∗),

where Ebody , Etest , Etrue , Efalse , Eop are expressions. When a value term is struc-
tured as above, it is given with a sort E .

5.3 Semantics

In this section we describe the semantics of the actor language. First, we explain
an informal semantics with examples, and then we describe the formal semantics
of the actor system with a rewriting theory IR. In IR, the transitions of actor
states and actor configurations are described as the deductions on the congruent
terms modulo equations E.

Informal Semantics. Like the programming language Scheme, the ActorNet
language uses prefix notation. For example (add 1 2 3) returns 6. Actor lan-
guage has arithmetic operators like add, sub, mul, div, and logical operators
like and, or, not. It also has a set of pair and list manipulation operators. For
example (cons 1 2) returns a pair of 1 and 2, and (car (cons 1 2)) returns
the first element 1, and (cdr (cons 1 2)) returns the second element 2. (list
1 2 3) returns a list (1, 2, 3) which is equivalent to (cons 1 (cons 2 (cons 3

nil))). Note that (cdr (list 1 2 3)) is (2, 3). There are assignment opera-
tors setcar and setcdr that set the first and the second elements of a pair.

An expression beginning with lambda is an anonymous function definition,
where S∗ are zero or more names for the function parameters. To ease writing
recursive functions, the actor language has the rec primitive, where S is for the
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name of the function and S∗ is for the parameters. cond is used for branching
expression: if Etest is evaluated to be true, Etrue is evaluated; otherwise Efalse is
evaluated. Observe that this behavior is not the call by value semantics of the
function application. quote is an operator that returns its parameter as a value
without evaluating it. This operator is useful when we are sending a list as a data
to another ActorNet platform. Without this operator, building a literal list is
difficult because the interpreter regards the literal list as a function application
and tries to evaluate all the elements. The seq operator is similar to the begin

operator of the programming language Scheme: each expression is evaluated in
turn, and the value of the last expression is returned.

The par, send and msgq are new actor operators not in Scheme. par creates
new actors for each expression and makes the actors evaluate the expressions
in parallel. The return value of the par expression is a list of the created actor
ids. Note that these ids are initially known only to the creator, but they can be
sent to other actors for the actor coordination, such as the join continuation [5].
While these actors remain in the same ActorNet platform, they share some parts
of their environments so that they can communicate efficiently. If actors migrate
to another platform, they can communicate via asynchronous messages. The
send operator provides a simple mechanism to send messages to an actor. send
makes a deep copy of the message and transmits it to the receiver to prevent
any dependence on the source host. For example, (send (list 100 x)) sends
all the data reachable from the variable x to an actor with id 100. An actor can
access its message queue by calling the msgq operator, which returns the list of
the messages the actor has received. ActorNet internally uses a recv method
that receives the massage and collects it to the list returned by msgq. Note that
msgq is one of the operators that makes our Actor language non-functional; it
may return different values for different calls.

The callcc operator accesses the Current Continuation (CC)–an abstrac-
tion of the rest of the program remaining to execute [24]. For example, the CC
of the expression (add 1 (mul 2 ↓ 3)) at the ↓ mark can be regarded as a
single-parameter function c1: (lambda (x) (c2 (mul 2 x 3))), where c2 is
an another single-parameter function (lambda (x) (add 1 x)). In general, the
CC can be regarded as a stack of single-parameter functions. The operand of
callcc is a single-parameter function to which the CC is passed.

In ActorNet, the state of an actor is a pair of a CC and a value to be passed to
it. Because an actor can read its current continuation, it can duplicate itself or
migrate to another platform voluntarily by sending its continuation-value pair
to another ActorNet platform. By simply applying the continuation to the value,
the sender’s computation is continued on a new platform. Using these primitives
we could easily and intuitively define the migrate function of Section 4.

Formal Semantics. The state of an actor is a pair of a continuation and a
value to be passed to it. In the rewriting theory, the actor states are represented
by an equivalent class of terms corresponding to the intermediate computations
between the actor state transitions. The computation of an actor is a sequence
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of actor state transitions. The interaction between actors are captured by an
actor configuration which is a snapshot of the whole actor systems. The actor
configuration can be regarded as a soup of actor states and actor messages. The
concurrent computations of actors are the transitions of the actor configurations.

Let us begin the formal semantics of Actor language with the environment
(R) which maps the identifiers to their values. An environment comprises two
stacks of symbols and values. When a symbol is evaluated, it is looked up from
the stack of symbols and the value at the corresponding index in the value stack
is returned. R has three operations: a constant emptyEnv: ∅ → R, an extend
operation [ , ]/ : S∗×V∗×R → R, and a lookup operation [ ] : R×S → V .
The equations below describe how environments are built. By the equations, the
terms in the left side and the right side of = are put to the same equivalent class
of terms3

emptyEnv = (env () ())

[ss′, vs′] /(env (ss) (vs)) = (env (ss′ ss) (vs′ vs)).

We also assign the sort R to the lists structured as (env (S∗) (V∗)). The look
up operation is also explained by the following equations.

(env (s ss) (v vs))[s] = v

(env (s′ ss) (v vs))[s] = (env (ss) (vs))[s] if s �= s′.

The second equation is a conditional equation: the equation is applied if the
(in)equality following the if keyword holds.

Continuations (K) are single parameter functions that represent the rest of
the program. In the rewriting logic, we assign a sort K to the lists structured as
follows.

K ::= (halt)

| (app (V∗yet) (V∗done) R K)

| (if Etrue Efalse R K),

where V∗yet is a list of not yet evaluated parameters, V∗done is a list of already
evaluated parameters, and Etrue/Efalse are expressions to be evaluated when T/F
are passed respectively.

A state of an actor is a pair of a continuation and a value: A ::= 〈 K , V 〉.
Any pair structured as such is assigned with a sort A. An actor configuration (C)
is a set of actor states and actor messages. Actor messages is a list structured
as M ::= (mesg N V), where N is the recipient address and V is the message
contents. The sort C of actor configurations is a supersort of A and M, and has
an associative and commutative constructor: | : C × C → C. That is, C is a
soup of actor messages and actor states.

3 In the rewriting logic, the equivalent classes can be regarded as states: the term
rewriting occurs between the equivalent classes.
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An actor computation is a transition of actor states by applying the deduction
rules based on the following rewrite rules4.

λ1 : 〈 (if etrue efalse r k) , T 〉 → 〈 k , eval ( etrue , r ) 〉
λ2 : 〈 (if etrue efalse r k) , F 〉 → 〈 k , eval ( efalse , r ) 〉
λ3 : 〈 (app (v vs) (vs′) r k) 〉 → 〈 (app (vs) (vs′) r k) , eval( v , r ) 〉
λ4 : 〈 (app () ((closure (ssargs) r ebody) vs) r

′ k) 〉
→ 〈 k , eval( ebody , [ssargs , vs]/r ) 〉

λ5 : 〈 (app () (list vs) r k) 〉 → 〈 k , (vs) 〉
λ6 : 〈 (app () (car (v vs)) r k) 〉 → 〈 k , v 〉
λ7 : 〈 (app () (cdr (v vs)) r k) 〉 → 〈 k , (vs) 〉
λ8 : 〈 (app () (k v) r k′) 〉 → 〈 k , v 〉
λ9 : 〈 (app () (callcc (closure (sarg) r

′ ebody)) r k) 〉
→ 〈 (halt) , eval( ebody , [sarg , k]/r

′ ) 〉
λ1 and λ2 explain the transitions of the conditional expressions. If T is passed

to the if continuation, etrue is evaluated; otherwise efalse is evaluated. We ex-
plain the eval operator in the next paragraph. λ3 shows how the parameters to
a function are evaluated sequentially: v, the first yet to be evaluated element,
is removed from the continuation and its evaluation is passed to the resulting
continuation. When all parameters are evaluated, they are applied to the func-
tion. λ4 to λ9 explain the parameter applications on different types of functions.
λ4 is for a user defined function. A user defined function is evaluated to be a
closure structure. Thus, the application of parameters extends the environment
with the parameters and evaluates the function body in the extended environ-
ment. λ5, λ6, and λ7 are for primary operators. For simplicity, we show only the
three primary operators for a list manipulation, but the rests are similar. λ8 is
for a continuation: if the function is a continuation, the parameter is passed to
the continuation. Observe that the old continuation k′ is ignored. λ9 explains
the callcc operator. The parameter to the callcc operator is a single param-
eter function which is evaluated to be a closure structure. In λ9 the body of
the single parameter function is evaluated in the environment extended with the
continuation k.

In the rewrite rules above, we used an operator eval ( , ) : E × R → V .
eval evaluates the expression E in the environment R. The following equations
on the terms of the eval operator build an equivalent class of terms for the
evaluation5.

eval ( s , r ) = r[s] (1)

eval ( n , r ) = n (2)

4 We simplified the rules by writing 〈 (app (vs) (vs′) r k) , v 〉 as
〈 (app (vs) (vs′ v) r k) 〉.

5 The equational rewriting based on these equations on eval terms will produce their
normal forms.
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eval ( k , r ) = k (3)

eval ( (closure (ssargs) r ebody) , r
′ ) = (closure (ssargs) r ebody) (4)

eval ( (lambda ( ssargs ) ebody) , r ) = (closure (ssargs) r ebody) (5)

eval ( (quote vs) , r ) = (vs) (6)

〈 k , eval ( (efunc esparam) , r ) 〉
= 〈 (app (esparam) () r k) , eval ( efunc , r ) 〉 (7)

〈 k , eval ( (cond etest etrue efalse) , r ) 〉
= 〈 (if etrue efalse r k) , eval( etest , r ) 〉 (8)

Equation (1) shows that the evaluation of a symbol is the value looked up
from the environment. Specifically, the equation means that the eval term and
the terms involved in the look up operation are in the same equivalent class.
Equation (2) to Equation (4) show that the evaluations of numbers, continua-
tions, and closures are themselves. Equation (5) shows how user defined functions
are converted to the closure structures. A closure is a list of the function param-
eter names, an environment, and the function body. When writing a program,
referencing a function itself from its body are often necessary; for example, to
make a recursive call. Although one can use the Y combinator [43] on the λ
expression for this purpose, rec operator provides an easy access to the name
of a function from its body. The following equation shows what rec means in
terms of the Y combinator.

(rec ( sfn ssargs ) ebody) = (Y (lambda (sfn) (lambda (ssargs) ebody))),

where Y = (lambda (f) ( (lambda (y) (f (lambda (ssargs) ( (y y) ssargs))))
(lambda (y) (f (lambda (ssargs) ( (y y) ssargs)))) ))

However, in the actual implementation, the rec term is transformed directly
to a closure term like Equation (5) and its environment is extended with a
mapping from the function name to the closure itself. Equation (6) shows that the
evaluation of a quote’d list is the list content. The quote operator is useful when
sending a list to another ActorNet platform; without it, the ActorNet node would
regard the list as a function application with the function of the first element and
the parameters of the rest of the elements. Equation (7) explains how a function
application is converted to the app continuation. Similarly, Equation (8) shows
how a conditional expression is converted to an if continuation. Observe that
unlike app continuation the two parameters etrue and efalse of the if continuation
are not eagerly evaluated: one of them is evaluated based on the evaluation of
etest .

Actors coordinate with others through the asynchronous message passing.
These interactions are described as transitions of actor configurations which are
a “soup” of actor states and messages. Actor configurations make transitions by
applying the deduction rules based on the following rewrite rules.

π1 : 〈 k , eval( (par′ 〈 (e es) , (ns) 〉) , r ) 〉 →
〈 k , eval( (par′ 〈 (es) , (ns n) 〉) , r ) 〉 | 〈 (halt) , eval ( e , r′ ) 〉,
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where n is a fresh actor id and r′ = [ msgq id , () n ]/r

π2 : 〈 (app () (send n v) r k) 〉 → 〈 k , () 〉 | (mesg n v)

π3 : 〈 (app (vsyet ) (vsdone) r k) 〉 | (mesg n v)

→ 〈 (app (vsyet ) (vsdone) r
′ k) 〉 if r[id] = n,

where r = (env (ss msgq id ss′) (vs (vsm) n vs′)),
r′ = (env (ss msgq id ss′) (vs (v vsm) n vs′))

π4 : 〈 (if etrue efalse r k) , v′ 〉 | (mesg n v)

→ 〈 (if etrue efalse r′ k) , v′ 〉 if r[id] = n,

where r = (env (ss msgq id ss′) (vs (vsm) n vs′)),
r′ = (env (ss msgq id ss′) (vs (v vsm) n vs′))

π5 : 〈 (halt) , v 〉 | c → c if v is N , S, K, P , or L sort

π1 shows how an actor creates other actors; par operator takes one or more
expressions as its parameters and creates new actors for each expression to con-
currently evaluate them. The return value from the par operator is a list of
the new actor ids. To simplify the explanation, we introduced the following two
helper equations.

eval ( (par es) , r ) = eval ( (par′ 〈 (es) , () 〉) , r )
eval ( (par′ 〈 () , (ns) 〉) , r ) = (ns).

π2 shows that send adds a message to the actor configuration. π3 and π4 specify
that the message in the configuration is added to the message queue of the
recipient actor. Finally, π5 describes the demise of an actor: when an actor
computation is completed, its state is removed from the configuration.

6 ActorNet Implementation

Based on the design proposed in Section 3 and the language definition of the
previous section, we discuss the issues in implementing the ActorNet runtime
platform.

6.1 ActorNet Network Implementation

ActorNet provides a single virtual WSN to actors by connecting physically
separated multiple WSNs through the Internet. Recall that the uniform net-
work structure of the virtual WSN is ensured by making the Internet a single
hop broadcast network. ActorNet implements two services called repeater and
forwarder to build the uniform network. The repeater bridges the communi-
cations between the Ad-Hoc wireless network and the Internet by passing all
messages received from one network to the other. Meanwhile, the forwarder
provides a single-hop broadcast overlay over the Internet by replicating the mes-
sages from each repeater to each of the others connected to it. The net effect
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of the repeater/forwarder architecture is transforming the individual physically-
separated WSNs into a single-hop neighborhood.

Figure 1 shows the repeater/forwarder network architecture of ActorNet. Each
repeater has a node called GenericBase through which the repeater can hear from
and talk to its WSN. A repeater injects any message it hears from the Internet
into its WSN and it sends any message it overhears from its GenericBase to the
forwarder. On the other hand, a forwarder is listening to a TCP port for any
connections. Once a connection is made, the client is registered to the forwarder
until the connection is terminated. In summary, any message overheard by a
repeater from its WSN is transmitted to the forwarder and then retransmitted
to the other repeaters and ActorNet platforms running on PCs. Finally, the
messages sent to the repeaters are injected into their WSNs.

The network bandwidth difference problem is currently handled by placing a
large message buffer at the repeaters. The fast messages from the Internet are
gathered at the buffer and then slowly retransmitted to the WSNs. However, as
the number of clients to the forwarder is increased, the repeaters will constantly
send messages to their WSNs. This will increase the chance of a network collision
and drain the energy from the nodes near the GenericBase. In addition, the
buffering solution is only valid while the input data rate to the buffer is smaller
than its output rate. To address these problems, a smarter scheme that makes
the repeaters selectively filter the messages can be used. The filtering is based on
the actor computation model: when an actor is created, its unique id is known
only to its creator, and as the parent or the children send messages with the new
actor ids, others can communicate with the newly created actor. Thus, unless a
messages with the actor id have passed through a repeater, no actors at the other
side of the repeater know the existence of the new actor. Because every data is
associated with its type in actor language, the actor id checking at the repeater
can be effectively done by adding a new type for the actor ids. Observe that the
actor ids stored in repeaters can be regarded as the receptionist names and the
external actor names of the actor configuration [5]. Our actor configuration of
Section 5.3 can be augmented with these actor names after this communication
optimization is introduced.

6.2 ActorNet Language Implementation

Recall from section 3 that an actor state is a pair of a continuation and a value,
and the computation of an actor is a series of actor state transitions made by
applying a state’s value to its continuation. In ActorNet, these state transitions
are implemented by two core methods of actor language interpreter called eval

and apply. apply takes the continuation and the value of an actor state as
its parameter and produces a new actor state by applying the value to the
continuation. eval takes an expression and an environment as its parameter and
evaluates the expression within the environment. While evaluating an expression,
the values of the identifiers are looked up from the environment that actually is
a stack of identifier-value pairs. The environment stack is stored at a structure
called closure when eval encounters a function definition, and is extended when
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the actual function parameters are applied to the function. The stack structure of
environment and the use of closure ensure the lexical scoping rule when looking
up the identifiers.

The tail recursion is a recursive call that does not necessarily result in a build
up of state information on the stack [47]. Because actor programs use recursions
for the loops, the tail recursion removal is crucial for actor programs; without it,
the stack will grow for any simple loop implementations. ActorNet implemented
only the basic tail recursion removal capability: the return addresses of function
calls are eliminated, removing unnecessary growth of the stack. Although it is not
a fully optimized capability, loops can be effectively replaced with parameterless
functions. The return addresses are naturally eliminated through the use of the
continuation in the actor computation.

The computation of an actor is explicitly managed as transitions of actor
states. This explicit state management leads to a simple and notationally clean
implementation of multi-threading capability. Because all the necessary infor-
mation required to proceed the computation of an actor is stored in the actor
state, the context switching is as simple as taking an actor state from a queue of
actor states and then applying its value to its continuation. This mechanism is
similar to the trampolining technique [47], except that ActorNet schedules the
switching and the states are explicitly managed. Observe that the environments
play the role of the stack, but they are essentially linked lists, as oppose to linear
arrays, built on the virtual memory. This dynamic structure eliminates the stack
management during the context switch.

6.3 ActorNet Platform Implementation

The current implementation of the ActorNet platform is implemented in only
30 kB of code and 2 kB of data. The code is stored in the Mica2’s 128kB flash
memory unit, leaving 100 kB for other applications; the data is allocated in the
4 kB of SRAM space.

Figure 4 depicts a layered software architecture of ActorNet platform for a
sensor node. A module does not know the modules above it, but it has access
to all the modules below it, not just the ones immediately below it. In contrast,
actors only use the interpreter module. Thus, the implementation details are
hidden from the actor programs.

Virtual Memory. ActorNet provides a virtual memory (VM) subsystem which
uses 64 kB of the 512kB serial flash as the virtual memory. This address space
is efficiently indexed by a 16-bit integer. The virtual address space is divided
into 512 pages of 128 bytes each. In addition, 8 pages of SRAM (1 kB) are
used as a cache for the virtual memory. While flash is not commonly used as a
virtual memory store due to the limitation on the maximum number of writes
it supports, typically about a million writes to each location, the relatively slow
operating speed of sensor nodes and small data sizes of mobile actors mean that
even long-term deployments of wireless sensors are very unlikely to approach
this limit.
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Actor ActorActor

Comm. DriverGarbage Collector

VM Driver

TinyOS

Mica2 Hardware

Interpreter

. . . .

Application−Level Context Switcher

Fig. 4. Software architecture of ActorNet platform (Mica2 node). By making actors
interact only with the interpreter layer, the platform differences are hidden from the
actors.

An inverted page table is used to search the cached pages for a requested
address. It is implemented as a priority queue that maintains the 8 most recently
used pages. Hence, the page replacement follows the Least Recently Used (LRU)
policy. Figure 5 shows the structure of a page. The 128 byte page is divided
into a 112-byte data area, a 14-byte bitmap, a 1-bit dirty bit flag, a 4-bit lock
count, and 11 bits of reserved space. Because the flash memory writes are slow,
we used the dirty bit to avoid an unnecessary page writing. The lock count
is used to prevent the VM subsystem from swapping out certain pages. For
example, the communication driver of Figure 4 uses a set of static variables
defined in a structure called ComData. Because this data has buffers shared with
the TinyOS communication subsystem, its container page must be locked during
transmit and receive operations. This is accomplished by calling the VM’s lock
procedure, subsequently followed by an unlock call.

Since there are 112 bytes of data area per page, the effective virtual mem-
ory space is 56 kB (512 × 112). In Figure 5, an allocation bitmap with 8-byte
granularity is maintained at the end of each page. Note that the whole 4 kB
SRAM space of the Mica2 is not large enough to hold the bitmap of all 56 kB
of virtual memory space: 56kB/8 = 7kB. Distributing the bitmap at each page
has a disadvantage when searching for a free space, because the VM driver has
to load each page from the flash to check the free space. On the other hand, it
is crucial to save the precious SRAM space.

Evaluation based on the benchmark of recursively computing the nth Fi-
bonacci numbers showed a page hit ratio of 95.00%. However, the page hit ratio
rises to 99.06% if we consider only the page misses involving the flash-write
operations.
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BitmapData
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Lock count: 4 bits
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Fig. 5. ActorNet page structure. Including bitmaps in the page structure imposes a
performance penalty when searching for a free space. However, having a smaller RAM
space than the size of the bitmap, it is an inevitable decision.

Application-Level Context Switching. Figure 6 shows pseudo code of yield
and resume methods for the context switching mechanism. In order to perform
the context switching correctly, stack contents and register values must be pre-
served. We reserved a stack space for TinyOS and other applications by defining
the stack[n] array in the stackBottom function. Register values including the
program counter and stack pointer are stored and reloaded through the setjmp

and longjmp system calls. The control flow for this mechanism is as follows.

1. When resume is called from TinyOS, it stores its register values in toTos.
If this is the first time that resume has been called, stackBottom is called
to allocate TinyOS stack space by defining stack[n] array. Following stack
reservation, stackBottom initiates the ActorNet platform.

2. When ActorNet calls yield, the current register values are stored at the
toApp variable and the control flow is returned from the setjmp call of the
resume function. Note that control does not go back to the stackBottom

function: the value of r in resume is 1 in this case.
3. When the resume function is called again from TinyOS, the register values

are restored from the toApp variable and control flow is returned to the
setjmp of the yield function.

The left side of Figure 6 shows the stack configuration with this mecha-
nism. In the figure, the stack fills up from the bottom. The shaded area be-
low the resume() is the stack space used by TinyOS. The white area below
the stackBottom() is the additional stack space allocated to TinyOS in the
stack[n] local variable. We use n = 500 for Mica2 platforms and n = 5000 for
PC platforms. Note that the TinyOS stack is limited to this white area; while,
in general, we cannot anticipate a stack usage, the applications running on a
Mica2 are fixed when a binary image is loaded. This, combined with the fact
that most TinyOS applications do not employ recursion, means that in most
cases the stack usage is predictable. The shaded area above the stackBottom()
is the stack space used by the ActorNet platform. The yield() line shows the
top of the application stack when the yield is called.
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yield()

stackBottom()

resume()

TinyOS stack

stack[n]

actorNet stack

jmp buf toTos, toApp;

void yield() {
if(setjmp(toApp)==0)

longjmp(toTos,1);

}
int resume() {
int r=setjmp(toTos);

if(r==0)

if(/*first time called*/)
stackBottom(500);

else

longjmp(toApp,1);

else

return r!=2;

}
void stackBottom(int n) {
char stack[n];

/*start ActorNet platform*/

longjmp(toTos,2);

}

Fig. 6. Application level context switching mechanism: stack[n] local variable provides
a gap between the beginning of ActorNet platform stack (StackBottom) and the stack
space for TinyOS. The yield and resume calls switch the stack pointer between these
two regions accordingly.

In order to explore the utility of the context switching mechanism, let us
consider the following NesC program for the read. Note that there is a spin-loop
in the read function waiting for the isFlashReadDone variable to become true.

read() {
...

while(!isFlashReadDone)

yield();

return flashData;

}

task loop() {
resume();

post loop();

}

With our context switching mechanism the yield() call in the read function
causes control to exit from the resume() call of the loop task. Thus, TinyOS
can schedule other tasks and process pending events. Later, when the loop task
is scheduled again and the resume function is called, the computation continues
from the yield() call of the read function as if it had just returned from the
yield. Note that we do not need to divide the application program into two
phases as in Figure 2. Hence the yield-resume mechanism improves the main-
tainability of applications.

Multi-Phase Garbage Collector. We implemented a scalable mark and
sweep garbage collector [7, 16] to reduce programming errors and to relieve the
developers of the burden of manual memory management. Our actor language
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is a typed language: every data value is tagged with a byte for its type. Because
there are only a handful of data types in the actor language, the rest of the bits
can be used as marking flags. In fact, the garbage collector uses two bits for its
marking and the communication stack machine uses another bit for serialization.
Marking the reachability of a memory cell from any active actor states can be
done easily because all actor states are explicitly managed. However, there are
also temporary data produced by the actor language interpreter that are not
yet bound to their state. To prevent them from being swept away, ActorNet
manages a list of the temporary data until their actor state is updated.

In our experiments, the conventional mark and sweep GC can take as long
as 10 seconds on Mica2 nodes. This delay can slow down the communication
speed considerably, as flash write operations prevent any other computations,
including radio communication, in TinyOS. Due to the memory limit, we cannot
allocate enough communication buffers to cover the full 10 seconds of GC. We
could squeeze the memory to make a communication buffer for 4 packets, but
with the conventional GC algorithm this buffer can allow only 1 packet per 2.5
seconds. Instead, we redesign the GC algorithm to have a shorter latency.

To solve this problem, we divide the sweep step into several subphases. Each
subphase clears 10 pages, which takes approximately 150ms. If we disregard the
mark phase, ideally, we can send as many as 26 packets per second, because
ActorNet has a communication buffer for 4 packets. With the multi-phase GC
algorithm, there is a transient time that the mark phase is finished, but the sweep
phase is not completed for all pages. The memory allocated during the transient
time needs a special care. Suppose that we do not mark the freshly allocated
memory, then the memories allocated at not-yet-swept pages will be erroneously
deallocated later. On the other hand, if we mark the fresh memory, the memories
allocated at the already swept page will not be cleared in the next round of GC.
To solve this problem, we implement a 2 bit marking scheme. In this scheme,
we alternate the marking bit on each GC round and mark all freshly allocated
memories with the current mark bit. Then, the freshly allocated memories will
not be swept as they are marked, and the marking in the next round can be
done correctly as it uses a different marking bit.

Communication Stack Machine. Sending and receiving a structured data
involve data serialization and deserialization. Considering the sender/receiver
imbalance, we built a stack machine for the communication. A sender traverses
a structured data and sends a serialized stream of stack manipulation commands
and data. The receivers can then reconstruct the data structure by simply fol-
lowing the stack commands.

A sender uses encode method to transmit a serialized stream of stack com-
mands and data, and the receivers use decode method to restore the data. Both
methods use a stack and an array called adrsTable to manage multiply refer-
enced addresses.

The encode algorithm is done in two steps. In the first step, encode fills
the adrsTable with the addresses of multiply referenced data. After this step,
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Fig. 7. A data structure to send (the first graph), and the stack configurations of a
receiver (the next 7 graphs)

all data reachable from the parameter are marked. In the second step, encode
generates a stream of stack commands and data while clearing the mark. The
details of the second step are as follows:

1. If encode visits a marked non-pair data, it sends the type and the value of
the data, and clears the mark. When decode receives the type tag and the
value, it pushes the address of the value.

2. If encode visits a marked pair, it sends a TagPair tag, processes the two
elements of the pair, and sends a CmdCons tag. decode creates a pair on
receiving the TagPair as a place holder, and pushes the pair’s address. It
pops two elements from the stack and links them to the place holder beneath
later when it receives the CmdCons.

3. If the marked data of cases 1) and 2) are in the adrsTable, encode sends a
CmdSaveRef tag and the index of the data in the adrsTable. On receiving
the CmdSaveRef, decode stores its top element at the index of its adrsTable.

4. Finally, if encode visits an unmarked data, it sends a TagRef tag and the
index of the data in its adrsTable. On receiving the TagRef, decode pushes
the address at the index of its adrsTable.

As an example of the serialization, suppose that we are sending the first graph of
Figure 7. The sequence of data sent from encode is TagPair, TagPair, TagWord,
d, TagWord, c, CmdSaveRef, 0, CmdCons, TagRef, 0, CmdCons, CmdEnd. From
this stream of stack commands and data, decode replicates the same structure on
its side. The 7 graphs from the second graph of Figure 7 show how the receiver
stack changes.



302 Y. Kwon, K. Mechitov, and G. Agha

Fig. 8. Selective-repeat protocol for reliable actor migration

Reliable Communication. Execution and communication in a WSN is not
always reliable. Many multi-agent applications do not depend on the reliability
of a particular actor: the system simply waits for a timeout before launching
another instance of a failed actor. Because reliable migration can increase com-
munication cost and latency, the first release of ActorNet did not implement
reliable migration. For other applications, however, time-outs to deal with a lack
of reliable actor migration simply introduces unacceptable delays.

Two reliable communication methods have been implemented to provide reli-
able communication. The first is a selective repeat protocol based on the sliding
window concept. This is similar to TCP, where the sender transmits all mes-
sages in an actor and then waits for the acknowledgments. Messages that have
not been acknowledged are retransmitted. The receiver waits for an entire actor
to be transmitted before it is added to the buffer for evaluation and execution.
The other method is a simpler stop-and-wait protocol which sends one packet
at a time and the sender blocks until the receiver acknowledges the packet. Un-
der this protocol, every packet is retransmitted periodically until acknowledged.
Figures 8 and 9 illustrate the behavior of these protocols.

We found the stop-and-wait protocol to be superior for environments with low
packet loss rates (under 15%). This is because stop-and-wait has lower processor
overhead, while selective repeat outperformed significantly in lossier environ-
ments. Both implementations are available in the ActorNet platform, and can
be selected as appropriate for the application environment.
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Fig. 9. Stop-and-wait protocol for reliable actor migration

7 Performance Evaluation

We now evaluate the experimental performance of the ActorNet platform. The
focus of the experiments described here is to show that the overhead incurred by
its constituent services is not prohibitive. Thus, ActorNet is a suitable platform
for mobile agents in resource-constrained sensor networks. Our evaluation has
three parts:

1. The page hit ratio of the virtual memory subsystem and its impact on system
performance.

2. The performance of the multi-phase garbage collector.
3. The communication costs incurred by ActorNet.

7.1 Virtual Memory Performance

We use the benchmark of computing the nth Fibonacci number to evaluate the
performance of the VM subsystem. A recursive version of this program is sim-
ple, but its exponential behavior is complex enough to carry out a performance
evaluation.

As one might expect, as the page cache size increases, the page hit ratio
increases. However, in a resource-limited computing environment such as a sensor
node, we cannot increase the cache size indefinitely. We must consider a trade-off
between the performance and the number of applications that can be run on the
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Fig. 10. Page hit ratio (top) and non-flash-write page hit ratio (bottom)

same platform (as not all applications use our VM). The first graph of Figure 10
shows the page hit ratio vs. cache size (number of pages in SRAM). Its shape is
approximately concave and increases with cache size. After about 14 pages, the
slope is almost flat. However, in the Mica2 platform, the flash write operations
dominate the time spent in the VM subsystem. Hence, considering only the flash
write operations as page-misses is a more accurate performance measure for the
ActorNet platform. The second graph of Figure 10 shows the page hit ratio
considering only the flash writes as a page miss. This graph shows a plateau
after 9 cache pages (the current ActorNet implementation uses 8 cache pages).
However, because of the lock count, when a message encoding or decoding task
is running, it would use 7 cache pages. When there are 8 cache pages, the non-
flash-write page hit ratio is 99.24%, while with 7 cache pages, the ratio becomes
99.06%.

7.2 Multi-Phase GC Performance

The slow flash write operation of the Mica2 poses a challenge for the garbage col-
lection. As discussed earlier, the GC delay directly limits communication speed.
In order to reduce the delay due to GC, we devised a multi-phase GC algorithm.
We evaluate the performance of our multi-phase GC as a function of the number
of pages swept per phase. The first graph of Figure 11 shows the number of flash
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Fig. 11. The number of flash writes during a GC phase (top). The number of GC
phases (bottom).

write operations during a GC phase. The solid line shows an average number
of flash writes, which can be interpreted as the expected delay due to GC for
each phase, and the dashed line shows the maximum number of flash writes,
which can be interpreted as the worst case GC delay per phase. The two lines
are roughly increasing functions of the number of pages swept, which agrees with
intuition. The second graph of Figure 11 shows the number of times GC is called
during an experiment. As expected, it is a decreasing function of the number
of pages swept per phase. The current implementation of ActorNet sweeps 10
pages per phase; its average number of flash write operations is 3.02 per GC.
If we choose the number of pages swept to be 100, then the average number of
flash writes is increased to 38.19. That is, when 10 pages are swept per phase,
each GC phase takes about 45.3 ms on average, and in the worst case it takes
about 870 ms.

There is another merit of the multi-phase GC other than the reduced delay per
GC phase. Because our memory reservation algorithm limits the search space
for free memory within the interval of the last-swept pages, if the number of
pages swept per phase is small, freshly allocated memory addresses are highly
correlated in space and time. That is, the fewer the pages swept per phase,
the higher the spatial and temporal locality of allocated data. The first graph of
Figure 12 shows the number of mark operations during an experiment. Note that
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Fig. 12. The number of Mark phases called (top). The number of flash writes due to
GC (bottom).

for each round of GC, there are a single mark phase and multiple sweep phases.
Hence, the number of mark phases is an indicator of how efficiently the memory
is used. The graph roughly shows that the number of GC rounds increases with
the number of pages swept per phase. The second graph of Figure 12 shows the
total number of flash writes made for GC during an experiment. Specifically, it
shows an increasing, concave curve: when few pages are swept per phase, the
related data tends to aggregate. Thus, related data is more likely to be found
in the cache, which reduces the number of flash writes. However, sweeping too
few pages at a time results in overly frequent calls to GC, as seen in the second
graph of Figure 11.

7.3 Evaluation of Communication Performance

Next we evaluate the communication costs of the example application of Sec-
tion 4. This application does not require a routing service: it follows a steepest
ascent path of temperatures, and also maintains a return path by itself. Also note
that it does not involve spanning tree based data dissemination; the program
migrates through the network, rather than collecting all the data at a central
node. When the gradient path is a straight line, and assuming that the nodes
are uniformly distributed, the number of nodes involved in the experiment is
proportional to

√
n for a WSN of n nodes.
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Table 1. The number of messages and the size of messages transmitted by the actor
program of Figure 3

message content size (byte) number of messages

measure 107 4
temperature 27 1
move 1629 + hop×8 57+
return 474 + hop×4 17+

To assess the communication performance, we measured the number and size
of messages while running the actor program in Figure 3. Table 1 summarizes
the results. Broadcasting a measurement actor to neighboring nodes requires
107 bytes of data in 4 messages. Sending a temperature reading requires 27
bytes, which can be sent in a single message. 27 bytes for a simple temperature
reading may look like an overhead. The overhead can be attributed to the type
information, the list data structure, and the communication stack commands.
However, they are necessary overheads to make actor messages generic and not
application dependent. Observe that the measure actor is only 107 bytes long.
A similar program that periodically samples the temperature and broadcasts
the result is about 28 kB. In order to move an actor along the gradient ascent
path, 1,629 bytes plus 8 bytes times the hop count thus far are necessary. The
extra 8 bytes per hop account for the local variables stored during the migration
(recursion). Note that as the actor migrates back to the base station, it discards
the unnecessary pieces of its code. As such, the returning actor shrinks in size
from 1,629+ bytes to 474+ bytes.

8 Case Study: Ambiance Platform

The ActorNet mobile agent framework is used as part of the macroprogramming
system called Ambiance [42]. The goal of Ambiance is facilitate non-expert pro-
grammers in using pervasive computing devices in the environment, including
WSNs. In the Ambiance system, users make “ubiquitous queries” called uQuery
through a web interface. A uQuery is an aggregation of flow-independent spec-
ification of tasks whose comprising steps, such as primitive calls, loops, nested
calls, and application-specific constructs, are converted to a task graph of con-
current active objects which can be executed concurrently. This makes Ambiance
an open system where users and tasks can join or leave the system at any time.

In Ambiance, WSN computations are automatically converted to actor pro-
grams and executed on the ActorNet platforms deployed in the sensor network.
Ambiance also uses a high level mobile agent system based on the meta-actor ar-
chitecture by Mechitov et al. [37]. This system is focused on effectively scheduling
and sharing middleware services for WSNs. For a given request, it runs matching
algorithms on a repository of service implementations and node capabilities to
find a feasible set of candidates, and optimally deploy the implementation to a
fine-grained set of selected nodes.
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Fig. 13. Two-level adaptive object model architecture for controlling active objects in
Ambiance

The Ambiance platform follows the architectural style of Adaptive Object-
Models (AOM), which define a family of architectures for object-oriented
software systems dynamically programmable by domain experts. AOMs are
meta-level architectures that enforce separation of concerns, and in particular
the separation of high-level logic from technical aspects of implementation. In
other words, AOMs store the base object as used in the code alongside its meta-
data description in terms accessible to the domain expert.

Ambiance further extend this architectural style to enable high-level speci-
fications of global behavior by uncoordinated end-users through a specialized
Web interface, and their translation into not only meta-objects, but also meta-
actors, which control and customize the runtime behavior of both passive and
active application objects. These meta-objects are dynamic, they have the ca-
pability to observe the application objects and the environment (introspection),
and to customize their own behavior by analyzing these observations (interces-
sion), as seen in Figure 13. This is a form of reflection, which allows a program
to reason about and affect its own representation and behavior. Watanabe and
Yonezawa [54, 57] introduced the notion of reflection in object-oriented concur-
rent computation model with message passing, which is in many respects similar
to the actor model of Ambiance.

The key innovation with respect to the AOM architecture is the separation
of the knowledge level, where the application, data, service definitions are rep-
resented, from the operational level, where actual low-level implementation of
these objects and services are located and code execution takes place. Figure 14
provides an overview of the system decomposed into these two levels. Note that
program representation and transformation environments exist entirely in the



Design and Implementation of a Mobile Actor Platform 309

Fig. 14. Ambiance macroprogramming platform runtime

knowledge level, and are thus logically independent of the underlying execution
framework used in the deployment environment.

At the operational level, a fine-grained mobile code deployment framework
must be available on resource-limited, real-time distributed systems comprising
the ambient infrastructure. The mobile code deployment platform is responsible
for: 1) deploying and executing dynamically generated low-level code, 2) dynami-
cally discovering and providing access to all sensor and computational resources
in the system, and 3) implementing the elements of the service repository. In
Ambiance, this role is filled by the ActorNet runtime.

ActorNet eases development by providing an abstract environment for
lightweight concurrent object-oriented mobile code on WSNs. As such, it enables
a wide range of dynamic applications, including fully customizable queries and
aggregation functions, in-network interactive debugging and high-level concur-
rent programming on the inherently parallel sensor network platform. Moreover,
ActorNet cleanly integrates all of these features into a fine-tuned, multi-threaded
embedded Scheme interpreter that supports compact, maintainable programs—
a significant advantage over primitive stack-based virtual machines used in other
WSN-based mobile agent implementations. Mobile agents, called base-level ac-
tors in Ambiance, are automatically generated using templates in the knowledge
level. The entire base-level application is then deployed as a system of cooper-
ating mobile agents in the WSN, where each node is an ActorNet platform.
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9 Related Work

There has been related work on WSNs in a number of areas, including mobile
agents, intelligent agent systems, and database systems. We discuss this and
other systems related work below.

9.1 Mobile Agent Systems for WSNs

Several attempts have been made to implement efficient mobile agent platforms
onWSNs. With the proactive mobile agents, the flexibility in reprogramming and
operating WSNs, and the energy saving due to the reduced amount of commu-
nication can be maximized. Mate [31] is one of the first mobile agent platform
designed for WSNs. Sharing some of the same design goals as ActorNet, it is
specifically targeted for highly memory restricted sensor nodes: its stack-based
virtual machine operates on a Rene2 mote with only 16kB of program memory
and 1 kB of RAM. Mate features high-level instructions that result in a small
code size and efficient code migration. Agilla is another mobile agent platform
for WSNs [17]. Like Mate, Agilla is a stack-based virtual machine with special in-
structions for code mobility. Additionally, Agilla supports multiple applications
running on a single node and features a Linda-like tuplespace that decouples
data from the spatial constraints [12]. Unlike ActorNet, whose agents are writ-
ten in a high-level language, programmability and code maintainability in these
two systems pose a much greater challenge due to the low level of language
abstraction.

Considering the programmability, there is a mobile agent platform for WSNs
called SensorWare [10] that provides a high-level language abstraction. Sensor-
Ware supports an event-based Tcl-like script language. This high level language
not only increases the programmability but also reduces the code size: the spe-
cific low-level details are removed by the high level of language abstractions.
Currently, SensorWare is implemented only on more powerful platforms such as
mobile phones or PDAs. However, with its code size of < 180kB, it may not be
directly applicable to current-generation sensor nodes, such as Mica2 or Telos,
which have much tighter memory constraints. In contrast, ActorNet implements
an interpreter for a high-level language in under 30 kB of code.

9.2 Intelligent Agent Systems for WSNs

Agent systems, in general, are concerned with high level issues such as negoti-
ation or scheduling. Bryan et al. [30] have designed an agent system for target
tracking in WSNs that addresses these high-level aspects of the system. In their
system, a WSN is divided into non-overlapping regions called sectors, which are
managed by statically assigned sector managers. The sector managers dynami-
cally assign track managers which initiate a new target tracking task as new tar-
gets are detected. The tasks are described by alternatively selectable sequences
of sub-tasks such that a schedulable plan for a new task can be dynamically built
from the space of alternative choices of sub-tasks by negotiating the available
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resources with other task managers. However, specialized to a target tracking
application, their system does not offer the flexibility usually associated with mo-
bile agents. For example, a user has to reprogram the entire WSN loaded with
the target tracking application to run different applications. Avoiding platform-
and application-specific restrictions on the power of mobile agents is one of the
distinguishing features of ActorNet, with its actors being able to take advan-
tage of powerful programming abstractions such as higher-level functions and
recursion to implement complex behaviors.

9.3 WSNs as a Data Provider

One of the main usages of a WSN is monitoring the area it is deployed. This
task can be done by making the sensors push events to the servers or by mak-
ing servers pull the data from sensors periodically or in response to the user’s
requests. In the pull model, WSNs can be seen as a data repository. Naturally,
DataBase-like approaches have been developed. For example, with TinyDB [32],
a user can easily read the sensor data by making a simple SQL-like query. In
TinyDB, considering the efficiency, the sensor data are aggregated together on
their way back to the base station. However, despite their efficiency and sim-
plicity, the DataBase like approaches usually provide much less flexibility than
mobile agent-based approaches such as ActorNet.

The approach TinyDB has taken on WSNs can be seen as a client/server sys-
tem where the sensor nodes are the servers providing information in response to
the requests from a central client. One of the problems, identified by James et
al [45], in this client/server approach, especially when the server resources are
limited, is that the server cannot provide enough interfaces that could satisfy all
the requests of the client. Usually the set of the services a sensor node provides
are statically determined when the node is deployed, but the kinds of requests
to a WSN can dynamically change over time. Hence, the statically determined
services may eventually fail to satisfy the dynamically changing requests. Ob-
serve that with a small storage and thus having only handful of fixed services,
the utility of a WSN becomes worse as the size of a WSN becomes large. In other
words, the efficiency and the scalability of a WSN can be restricted with this
static approach. A technique called Remote Evaluation has been suggested to
address this problem [45]. In this technique, a program is sent to a server to be
evaluated remotely and the result is sent back to the client. This Remote Eval-
uation approach not only increases the flexibility of the server but also reduces
the amount of the network communication between the server and the client.

Another approach similar to the Remote Evaluation technique is the work of
Jagannathan [23]. His work is focused on the definition of languages for coordi-
nation in distributed environments. In his work, a continuation is transferred to
a remote node instead of a program and its parameters. A continuation sent to
a node can locally process the remotely located data to resolve the synchroniza-
tion issues. Although we do not send continuations for this purpose, our notion
of actor migration bears similarity with this mechanism.
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9.4 Related Work in Other Aspects

The actors running on ActorNet are implementation of the Actor model. An ac-
tor is a self-contained computing element that communicates with other actors by
asynchronous messages. The concept of the actors was proposed by Hewitt [21],
and formalized as a transition system by Agha [5]. There are many implemen-
tations of the Actor systems including the work of Agha et al. [4], where the
location of an actor computation is added to the actor programs to enhance the
concurrency.

In developing applications for WSNs, reprogramming of sensor nodes has been
a big problem that requires considerable amount of time and effort. For this
specific problem, a network reprogramming protocol, called Deluge [22], has
been developed. The protocol works like a distributed flooding algorithm [49]:
each node compares the versions of the advertised images with its own. When a
higher version exists it requests and installs the whole image from the winning
advertiser. A practical difficulty is that the application images are often larger
than the physical memory size. With this protocol, over-the-air reprogramming
of a network becomes easy. However, when an upgrade is required on only a few
nodes, Deluge is an overkill since it upgrades unnecessary parts of the network
also. Moreover, running several distinct applications concurrently on a single
network requires the creation of a large image containing all applications.

Since ActorNet was originally proposed in [28], it has been used as a base
technology for other applications for WSNs. In the Ambiance system [42] and
the shared middleware service system of Mechitov et al. [37], ActorNet serves
as an end-computing platform. Karmani and Agha [25] developed a debugging
tool for WSN applications based on ActorNet.

10 Future Research Directions

Although ActorNet provides many useful features not found in any previous sen-
sor network programming platform, the current implementation still has several
limitations. We describe several open problems.

One of the biggest challenges is fault tolerance: as message transmission in
WSNs is via local broadcast, we cannot use a simple message acknowledgment
mechanism for reliability. Several reliable communication mechanisms for Actor-
Net have been evaluated in [44], and we are currently investigating techniques
to implement an efficient negative acknowledgment-based rebroadcast reliability
mechanism.

ActorNet is a bare bones actor system and does not provide coordination
mechanisms. The virtual memory and multi-tasking environments provided by
ActorNet open the possibility for the more advanced coordination mechanisms.
These could be as simple as tuple spaces [12] and ActorSpaces [3], or more
complex ones such as synchronizers [18], which can be built on top of the existing
distributed storage services for sensor networks [36].

Security is another concern for the mobile agents. Mobile agent platforms
can prevent malicious agents performing an admission control against signed
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agent programs. However, this security checking is more challenging in ActorNet
because the program is mixed with the states and is changing over time. However,
actors work on isolated memory with well-defined and if the runtime ensures that
the actor semantics is correctly implemented, security can be enhanced. Another
possibility is to use memory management and garbage collection of actors to
enhance security by limiting the temporal exposure of a node.

There are many resource management related issues that we have not consid-
ered in this work. For example, only a limited number of actors can operate with
reasonable performance on as embedded systems have limited processing power
and memory. This means that resource arbitration is necessary. Such resource
arbitration must be self-evolving and adaptive to enable autonomic function-
ing of a WSN. In a way, this problem is analogous to the resource arbitration
problem in clouds or in enterprise storage systems [55].

We have also not considered energy consumption. Energy is a critical con-
straint in WSNs and requires careful management. Some embedded nodes pro-
vide frequency scaling to conserve energy and this can interact with other
behaviors of a node, further complicating energy management (e.g. see [39]).

Despite its limitations, we believe ActorNet provides powerful, efficient, scal-
able, and high level services for developing applications for WSNs. However,
further research is needed to facilitate the broader use of actors for building
WSN applications.
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