Security-aware Virtual Machine Allocation in the Cloud: A Game Theoretic Approach

Presenter:
Charles Kamhoua, Ph.D.
Air Force Research Laboratory
Cyber Assurance Branch

Sept 1, 2015

Collaborators:
Luke Kwiat (Univ. of Florida)
Kevin Kwiat (AFRL/RIGA)
Jian Tang (Syracuse Univ.)
Andrew Martin (Oxford Univ.)
Outline

- Public Cloud Computing
- Challenges
- Game Theory
- System Model
- Game Model
- Game Analysis
- Numerical Results
- Model Extension
- Conclusions
- Reference
Game Theory in the Cloud?
What is Cloud Computing?
NIST Five Essential Characteristics

- **On-demand self-service**
 - A consumer can provision computing capabilities as needed.

- **Broad network access**
 - Capabilities are available over the network.

- **Resource pooling**
 - The provider's computing resources are pooled to serve multiple consumers according to consumer demand.

- **Rapid elasticity**
 - Capabilities can be elastically provisioned and released to scale rapidly outward and inward commensurate with demand.

- **Measured service**
 - Resource usage can be monitored, controlled, and reported.

Benefits and Risks of Cloud Computing

Benefits
- Faster deployment
- Infrastructure flexibility
- No up-front Investment
- Fine-grained billing (e.g. hourly)
- Pay-as-you-go
- Improved productivity

Risks
- Availability of services and data
- Complexity
- Performance
- Privacy
- Security
- Interdependency
- Negative externalities
Cause of Cyber Security Interdependency in a Public Cloud

- No perfect isolation of different user.
- Sharing of common resources.
- Some of the resources can be partitioned.
 - CPU cycles, memory capacity, and I/O bandwidth.
- Some of the resources cannot be well partitioned.
 - Last-level cache (LLC), memory bandwidth, IO buffers and the hypervisor.
- The shared resources can be exploited by attackers to launch cross-side channel attack.
Cross-side Channel Attack

- A malicious user can analyze the cache to detect a co-resident VM’s keystroke activities and map the internal cloud infrastructure and then launch a side-channel attack on a co-resident VM.

- An attacker can initiate a covert channel of 4 bits per second, and confirm co-residency with a target VM instance in less than 10 seconds.

Our Approach

- **Favorable:** *Small* organizations find that the benefit of joining a public cloud outweigh the risk.

 - Quick adoption of public cloud by small organizations

- **Problems:** Cross-side channel attack, cyber security interdependency and negative externalities prevent *big* organizations from joining a public cloud.

- **Objective:** Use an allocation mechanism based on security to help big organizations decide to join a public cloud.

- **Approach:** Apply game theory and use Nash Equilibrium as the allocation method.
Apply Game Theory in Public Cloud Game

- *Game Theory* is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers (by Myerson).

- The attackers and the public cloud users are intelligent and rational.

- Rational attackers and cloud users interact in a way that can be predicted and modeled.

- Allows for allocation of Virtual Machines for ideal security.
Game Theory Optimum Decision loop

Identify all the players, their strategies, and payoffs.

Information:
Does each player know about others’ strategies and payoffs?

Monitoring:
Observe other action, update your belief.

Nash Equilibrium:
Play your best response to other players’ strategies.
The Nash Equilibrium

- Every game has at least one Nash Equilibrium (NE) in either pure or mixed strategies.
- A strategy profile is a NE if no player can unilaterally change its strategy and increase his payoff.
 - Each player is playing its best response to other player’s strategies
- The NE of a security game can be used to:
 - Predict attacker strategy
 - Allocate cyber security resources
 - Protect against worse-case scenario
 - Develop cyber defense algorithms
 - Form the basis for formal decision making
System Model

- Two hypervisors: One with higher security than the other, but more costly to use.
- For each \(n \) users, the best strategy (Invest or Not invest) depend on other users’ actions.
- A compromised hypervisor make all users vulnerable on that hypervisor.
- Model extendable to \(m \) hypervisors
Game Model

Game Model in Normal Form

<table>
<thead>
<tr>
<th>Attacker</th>
<th>User 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>A_1</td>
<td>$q_N L_1 + q_N \pi L_2$</td>
</tr>
<tr>
<td></td>
<td>$R - q_N \pi L_2$</td>
</tr>
<tr>
<td>A_2</td>
<td>$q_N L_2 + q_N \pi L_1$</td>
</tr>
<tr>
<td></td>
<td>$R - q_N L_2$</td>
</tr>
<tr>
<td>A_3</td>
<td>$q_I L_3$</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_I</td>
<td>Probability of a successful attack on a user given that he has invested in security</td>
</tr>
<tr>
<td>q_N</td>
<td>Probability of a successful attack on a user given that he has not invested in security</td>
</tr>
<tr>
<td>π</td>
<td>Probability that the hypervisor is compromised given a successful attack on a user</td>
</tr>
<tr>
<td>R</td>
<td>User reward from using the cloud computing services</td>
</tr>
<tr>
<td>e</td>
<td>Total expense required to invest in security</td>
</tr>
<tr>
<td>L_i</td>
<td>User i’s expected loss from a security breach</td>
</tr>
<tr>
<td>I</td>
<td>User’s strategy “Invest”</td>
</tr>
<tr>
<td>N</td>
<td>User’s strategy “Not invest”</td>
</tr>
<tr>
<td>A_i</td>
<td>Attacker’s strategy “launch an attack on User i”</td>
</tr>
<tr>
<td>U_i</td>
<td>User i</td>
</tr>
<tr>
<td>H_i</td>
<td>Hypervisor i</td>
</tr>
</tbody>
</table>
Theorem 1: If \(L_3 > \frac{qN}{qI} (L_2 + \pi L_1) \), then the strategy profile \((A_3, N)\) is Nash equilibrium of the game in Table 1.

Theorem 2: If \(L_3 < \frac{qN}{qI} (L_2 + \pi L_1) \) and \(e > (q_N - q_I)L_2 \), then the strategy profile \((A_2, N)\) is a Nash equilibrium.

Theorem 3: If \(L_1 > \frac{qI}{qN} (L_3 + \pi L_2) \) and \(e < q_N \pi L_2 \), then the strategy profile \((A_1, I)\) is a Nash equilibrium.

Theorem 4: If \(L_3 < \frac{qN}{qI} (L_2 + \pi L_1), e < (q_N - q_I)L_2, \) and \(L_1 < \frac{qI}{qN} (L_3 + \pi L_2) \) hold, then the game admits a mixed strategy Nash equilibrium. \(U_2 \) mixes at
\[
P(H_1) = \frac{q_I[(L_3+\pi L_2)-(L_2+\pi L_3)]}{q_N(L_2+\pi L_1)-q_I(L_2+\pi L_3)+q_I \pi L_2} \quad \text{and} \quad P(H_2) = \frac{(e+q_I \pi L_2)}{q_N L_2-q_I L_2(1-\pi)}
\]

\(U_1 \) and \(U_n \) will always allocate to \(H_1 \) and \(H_2 \) if \(L_1 (q_N - q_I \pi) < e < L_n (q_N - q_I) \).
Numerical Results

Parameters: $R = 1.5$, $q_I = .1$, $q_N = .4$, $\pi = .1$, $L_1 = 1$, $L_3 = 100$, $e = .4$
Then: $.39 < e < 30$

Parameters: $R = 1.5$, $q_I = .1$, $q_N = .4$, $\pi = .1$, $L_1 = 1$, $L_2 = 10$, $L_3 = 20$
Then: $.39 < e < 6$
Numerical Results

Parameters: \(R = 1.5, \ q_I = .1, \ q_N = .5, \)
\(L_1 = 1, \ L_2 = 10, \ L_3 = 20, \ e = .4 \)

For \(0 < \pi < 1 \) there is no strategy change!

Changes in User 2's Payoff with Probability \(\pi \).
A For $N \geq 3$, There will only be one discrete user in which they alone will make a decision as to which hypervisor they allocate

- i.e., all other users will remain static in their allocation choice regardless of the number of players.

The one user will sit on the threshold of choosing between investing in security and not investing in security because all other users’ expected loss magnitudes balance out.

- Find user that causes attacker to flip preferences.
For these given parameters, User 4 causes the attacker to change preferences.

Parameters: $R = 1.5$, $q_N = .4$, $q_I = .1$, $\eta = .1$, $e = .4$, $L_1 = 1$, $L_2 = 2$, $L_3 = 3$, $L_4 = 4$, $L_5 = 5$, $L_6 = 6$, $L_7 = 7$, $L_8 = 8$, $L_9 = 9$, $L_{10} = 10$
Externality Reduction

Externality from Selected Allocation Types
Conclusions

- Previous research shows that each user’s decision to *Invest* or *Not Invest* depends on the potential loss from the neighbors after a security breach.

- VMs that have similar potential loss from a security breach should be on the same physical machine.

- The allocation method based on Nash Equilibrium was shown to reduce externalities compared to other allocation methods.

- The expense factor e can be set by cloud provider to achieve desirable VM allocation preferences.
Thank You!