Trust & Security/Assured Cloud Computing Joint Seminar: Security-Aware Virtual Machine Allocation in the Cloud: A Game Theoretic Approach

  • Posted on September 3, 2015 at 11:40 am by
  • Categorized Events.
  • Comments are off for this post.

Charles Kamhoua

Charles A. Kamhoua, U.S. Air Force Research Laboratory
September 2, 4:00 p.m., 2405 Siebel Center

Slides | Video

Research paper presented: Luke Kwiat, Charles A. Kamhoua, Kevin Kwiat, Jian Tang, and Andrew Martin, “Security-aware Virtual Machine Allocation in the Cloud: A Game Theoretic Approach”, IEEE International Conference on Cloud Computing (IEEE Cloud 2015), New York, NY, June 27-July 2, 2015. [full text]

Abstract: With the growth of cloud computing, many businesses, both small and large, are opting to use cloud services compelled by a great cost savings potential. This is especially true of public cloud computing which allows for quick, dynamic scalability without many overhead or long-term commitments. However, one of the largest dissuasions from using cloud services comes from the inherent and unknown danger of a shared platform such as the hypervisor. An attacker can attack a virtual machine (VM) and then go on to compromise the hypervisor. If successful, then all virtual machines on that hypervisor can become compromised. This is the problem of negative externalities, where the security of one player affects the security of another. This work shows that there are multiple Nash equilibria for the public cloud security game. It also demonstrates that we can allow the players’ Nash equilibrium profile to not be dependent on the probability that the hypervisor is compromised, reducing the factor externality plays in calculating the equilibrium. Finally, by using our allocation method, the negative externality imposed onto other players can be brought to a minimum compared to other common VM allocation methods.

Bio: Charles A. Kamhoua received his B.S. in Electronic from the University of Douala (ENSET), Cameroon in 1999, and the M.S. in Telecommunication and Networking and PhD in Electrical Engineering from Florida International University in 2008 and 2011 respectively. In 2011, he joined the Cyber Assurance Branch of the U.S. Air Force Research Laboratory (AFRL), Rome, New York, as a National Academies Postdoctoral Fellow and became a Research Electronics Engineer in 2012. Prior to joining AFRL, he was an educator for more than 10 years. His current research interests cover the application of game theory and mechanism design to cyber security and survivability, with over 50 technical publications in prestigious journals and International conferences including a Best Paper Award at the 2013 IEEE FOSINT-SI. Dr. Kamhoua has been recognized for his scholarship and leadership with numerous prestigious awards including ten Air Force Notable Achievement Awards, the 2015 AFOSR Windows on the World Visiting Research Fellowship at Oxford University, UK, an AFOSR basic research award of $645K, the 2015 Black Engineer of the Year Award (BEYA), the 2015 NSBE Golden Torch Award – Pioneer of the Year, a selection to the 2015 Heidelberg Laureate Forum, a 2011 NSF PIRE award at Fluminense Federal University, Brazil, and the 2008 FAEDS teacher award. He is an advisor for the National Research Council, a Senior Member of IEEE, a member of ACM, the FIU alumni association, and NSBE.