Assured Cloud Computing Special Seminar: Design and Validation of Distributed Data Stores using Formal Methods
- Posted on January 25, 2016 at 3:17 pm by amyclay@illinois.edu.
- Categorized Events.
- Comments are off for this post.
Peter Ölveczky, University of Oslo
February 10, 4 p.m. 2405 Siebel Center
Abstract: To deal with large amounts of data and to ensure high availability, many cloud computing systems rely on distributed, partitioned, and/or replicated data stores. However, such data stores are complex artifacts that are very hard to design and analyze, as they satisfy different notions of “consistency”.
We therefore propose to use formal methods to model distributed data stores, and to analyze both their correctness properties and their performance. In particular, one goal is to identify key building blocks in the design of such data stores, and their properties, so that new data stores, or different versions of existing data stores, can be designed by reusing such “components”.
This talk, which is based on joint work with Jon Grov and a number of members of the Assured Cloud Computing Center, gives a high-level overview of this ongoing work, which has already been used to design and analyze new versions of Google’s Megastore, Facebook/Apache’s Cassandra, and UC Berkeley’s RAMP distributed data stores.
Bio: Peter Ölveczky received his PhD in computer science from the University of Bergen, Norway, in 2000, having performed his thesis research at SRI International. He was assistant and then associate professor at the University of Oslo 2001-2008, and has been a full professor there since 2008. He was also a post-doctoral researcher at the University of Illinois at Urbana-Champaign (UIUC) 2002-2004, and has been a visiting researcher at UIUC since 2008.
Ölveczky’s research focuses on formal methods, in particular for real-time systems. He is the developer of the Real-Time Maude tool, which has been used to formally model and analyze a large range of advanced systems, including scheduling protocols, distributed data stores, wireless sensor network algorithms, the human thermoregulatory system, mobile ad hoc networks, avionics systems, and so on. Ölveczky has organized 9 international scientific workshops/conferences, and has edited a number of scientific books and journal issues.