
Moving towards a Secure 

Container Framework

Mohammad Ahmad, Dr. Rakesh Bobba, Dr. Sibin Mohan, 

Dr. Roy Campbell

1



Introduction to Containers

• Lightweight VM

• Own process space

• Network space

• Can install own packages

• How are they different from a VM?

• OS based virtualization

• Uses the host Kernel

• Can not boot a different Kernel

2

Hardware

Host OS

Container Container



Building blocks of 

containers
• Cgroups

• Resource accounting & limiting

• CPU, memory, Block I/O

• Namespaces

• Limit what a container can see

• Process, filesystem, network

3



What’s all the hype about?

• Drivers of adoption

• Startup on the order of milliseconds

• Packaging dependencies

• Portability

4



Container Usage

• Containers are gaining popularity in Platform as a Service 

Clouds (PaaS)

• Openshift

• DotCloud

• Heroku

• Multiple implementations available

• docker, rkt, LXC

5



But wait

• We have a problem …

• Cross container side-channel attacks shown on 

public clouds!

6



Platform as a Service 

(Paas)

• Customers upload source code and executables 

• Cloud provider facilitates data storage, monitoring 

and logging

• Multi-tenant environment

• Containers used for isolation

7



Cache Hierarchy

8

Shared L3 Cache

L1 

Cache

L2 

Cache

Core 0

L1 

Cache

L2 

Cache

Core 1

L1 

Cache

L2 

Cache

Core 2

L1 

Cache

L2 

Cache

Core 3

Processor 0



Threat model

9

Hardware

Host OS

Container Container

Victim Adversary



Flush-Reload attack
• Leverages shared libraries/binaries with the victim

• Step 1: Flush

• Specific chunks containing instructions in the memory page 

shared with the victim are flushed

• Using the `clflush` instruction

• Step 2: Flush-Reload interval 

• Step 3: Reload

• Adversary times the reload of the same chunks

10



Why are we interested in 

cache based side-channels?

• Fine-grained cross-tenant attacks shown in public 

clouds

11



Motivation

• Such attacks inhibit users from moving to public 

clouds

• Defense against such attacks could prove to be a 

win-win for both

• Cloud providers: More customers

• Cloud users: Reduced costs

• Private clouds with multiple security levels

12



How can we defend against 

such attacks?
• Disallow resource sharing

• Duplicate binaries

• Increase in memory footprint

• Decrease number of tenants (Profit!) 

• Selective sharing

• What about coarse-grained attacks?

13



Dedicated Instances

• No multi-tenancy

• Expensive!

14



Our approach

15



Cache flushing

• Lets flush the cache on each context switch

• Problem

• Overhead of cache flushing

• Vulnerable to LLC based cross-core side-channel 

attacks

16



Security aware scheduling

• Gang schedule trusted tenants

• Flush caches between context switches

17



Security aware scheduling

• Problem

• Gang scheduling can lead to reduced utilization

• Overhead of cache flushing

18



Cache partitioning

• Partition the last level cache (LLC) between tenants

• Hardware support 

• Intel Cache Allocation Technology (CAT)

• Allows us to dynamically partition the LLC

• Enables increased isolation

19



Scheduling + Cache 

Partitioning

• SecureCore

• One of the cores is security aware

20

Shared L3 Cache

L1 

Cache

L2 

Cache

Core 0

L1 

Cache

L2 

Cache

Core 1

L1 

Cache

L2 

Cache

Core 2

L1 

Cache

L2 

Cache

Core 3



Scheduling + Cache 

Partitioning

• SecureCore

• One of the cores is security aware

• Isolated LLC

• Cache flush between context switches on this 

core

• Only flush LLC partition allocated to this core

21



Current Implementation

• Built a loadable kernel module

• Return probes (kretprobes)

• Plug into the Linux scheduler routine

• Adapted Google PerfKitBenchmarker

22



Additional optimizations

• Scheduler optimizations to minimize the number of 

cache flushes

• Increased Minimum Runtime for processes

23



Research Challenges

• Scheduler optimizations

• Detection of malicious containers

• Container placement

• Alternate approaches for isolation

24



Questions

• Scheduler optimizations

• Detection of malicious containers

• Container placement

• Alternate approaches for isolation

25


