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Abstract—The growing demand for processing and storage 
capabilities has led to the deployment of high-performance 
computing infrastructures. Users log into the computing 
infrastructure remotely, by providing their credentials (e.g., 
username and password), through the public network and using 
well-established authentication protocols, e.g., SSH. However, 
user credentials can be stolen and an attacker (using a stolen 
credential) can masquerade as the legitimate user and penetrate 
the system as an insider.  

This paper deals with security incidents initiated by using 
stolen credentials and occurred during the last three years at 
the National Center for Supercomputing Applications (NCSA) 
at the University of Illinois. We analyze the key characteristics 
of the security data produced by the monitoring tools during 
the incidents and use a Bayesian network approach to correlate 
(i) data provided by different security tools (e.g., IDS and 
NetFlows) and (ii) information related to the users’ profiles to 
identify compromised users, i.e., the users whose credentials 
have been stolen. The technique is validated with the real 
incident data. The experimental results demonstrate that the 
proposed approach is effective in detecting compromised users, 
while allows eliminating around 80% of false positives (i.e., not 
compromised user being declared compromised). 

 
Keywords - security; credential stealing; intrusion detection; 

correlation; Bayesian network. 

I.  INTRODUCTION 
The growing demand for processing and storage 

capabilities posed by large-scale scientific and business 
applications, has led to the deployment of high-performance 
computing infrastructures [1]. This trend is going to persist 
in the near future, as shown by the deployment of new 
supercomputing facilities, e.g., BlueWaters [7], and the wide 
adoption of new service paradigms, such as, the cloud 
computing [8]. Protecting the integrity and the confidentiality 
of data and applications executing on these infrastructures 
from unauthorized accesses is of paramount importance.  

Users log into the computing infrastructure remotely, by 
providing their credentials (e.g., username and password), 
through the public network and using well-established 
authentication protocols, e.g., SSH [2]. However, user 
credentials can be stolen using phishing or social engineering 
techniques and made available to the attackers via the cyber-
security market [10] [18]. By using stolen credentials, an 
attacker can masquerade as the legitimate user and penetrate 
the system essentially as an insider. 

An access to the system performed with stolen 
credentials is hard to detect and it may lead to serious 
consequences, such as the attacker obtaining root-level 
privileges on the machines of the system or breach of 
privacy, e.g., email access. Therefore, the timely detection of 
ongoing suspicious activities is crucial for secure system 
operations. For these reasons, computing infrastructures are 
currently equipped with multiple monitoring tools (e.g., 
intrusion detection systems (IDS) and file integrity monitors) 
allowing system administrators to detect suspicious 
activities. However, the need for ensuring high coverage in 
detecting attacks, calls for accurate and highly sensitive 
monitoring, which in turn leads to a large number of false 
positives. Furthermore, the heterogeneity and the large 
volume of the collected security data makes it hard for the 
security team to conduct timely and meaningful forensic 
analysis. 

This paper deals with credential stealing incidents, i.e., 
incidents initiated by means of stolen credentials, which 
occurred during the last three years at the National Center for 
Supercomputing Applications (NCSA)1. In our earlier study 
[4] we showed that credential stealing is the top security 
violation, involving around 26% of all the incidents occurred 
at the NCSA. The paper proposes an approach to automate 
the investigation of the security data in identifying 
compromised users, i.e., the users whose credentials have 
been stolen and used by an attacker to penetrate and to 
misuse the system.  

We analyze the key characteristics of a subset of security 
alerts collected during the days the incidents occurred and 
use a Bayesian network approach to correlate (i) data 
provided by different security tools (e.g., IDS and NetFlows) 
and (ii) information related to the users’ profiles to identify a 
compromised user. The key findings of the study are:  

• The effectiveness of the alerts to detect compromised 
users widely varies. Some alerts are highly accurate 
and triggered only when a user is actually 
compromised. Others generate a significant number 
of false positives. For instance, the watchlist alert is 
observed twice in the analyzed data set and, in both 
cases, it points to compromised users. In contrast, 
HotClusterConn (a file downloaded by a node of the 
infrastructure that is not supposed to do this) alert is 

                                                           
1 www.ncsa.uiuc.edu - University of Illinois at Urbana-Champaign 
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potentially raised by about 64 users per day; 
however, most of these users are not actually 
compromised. 

• Correlating multiple alerts via statistical techniques, 
e.g., a Bayesian network approach is an effective 
way to enable accurate detection of compromised 
users.  Using the Bayesian network as a decision 
mechanism, we are able to automatically remove 
from the analysis around 80% of false positives (i.e., 
not compromised user being declared compromised) 
without missing any compromised user. 

• The approach is effective in case of new/unknown 
incidents. We used the proposed Bayesian network 
approach to analyze the data collected during a very 
recent incident (occurred on Oct-29-2010) at the 
time the study was conducted. Although the incident 
is included neither in the training nor in the 
validation data sets, our approach is able to identify 
the compromised user. 

The paper is organized as follows. Section II presents 
background and related work in the area. Section III provides 
the description of the data sources and shows how the 
investigation of the alerts has been automated. Section IV 
presents available incident data and provides insights on the 
effectiveness of the security alerts at identifying 
compromised users. Section V describes the adopted model 
and the underlying assumptions. The model is validated by 
means of the real incident data in Sections VI and VII. 
Section VIII concludes the work.  

II. BACKGROUND AND RELATED WORK 
The increasing growth and diversification of the Internet 

services has led to an underground economy trading stolen 
credentials during the last years [10]. Despite the existence 
of specific and more sophisticated prevention techniques, 
e.g., [14], security violations conducted by using stolen 
credentials represent a challenging threat in several 
application domain, such as, the Internet banking [11], grid-
computing infrastructures [2], and operating systems [12]. In 
this paper, the problem of identifying compromised users is 
considered in the context of an open networked environment 
at the NCSA. The extensive use of the SSH protocol to 
authenticate the users of the NCSA machines is a serious 
security threat: as a matter of fact, it has been shown that 
around 26% of a representative set of security incidents 
occurred during the last five years at the NCSA, has been 
performed with stolen credentials [4]. 

Several studies deal with the security issues related to the 
use of the SSH protocol. For example, [18] describes the use 
of statistical techniques, based on timing data collected from 
the network, that can then be used to obtain information 
about what the users type during SSH sessions. Authors in 
[2] investigate the pervasiveness of the attacks in case of 
SSH-based credential stealing. Finally, it has been shown 
that the information stored by SSH, such as, the 
known_hosts file, can be used to expand an attack to 
further machines once a machine has been initially 
compromised [13]. These works provide valuable insights to 

improve the security of SSH. Nevertheless, it has to be noted 
that the users might easily lose the control of the credentials 
[18], particularly when considering recent threats, such as 
phishing and social engineering techniques. As a result, once 
the credentials have been stolen, even the most sophisticated 
authentication mechanisms might not be able to protect from 
an unauthorized access.  

Security analysis has been often conducted by using the 
data collected via honeypots, e.g., [15], [16], or simulated 
intrusions, such as [17]. In this work, the analysis 
encompasses real security data collected during spontaneous 
incidents occurred at the NCSA; the observed alerts are 
correlated with a Bayesian network approach to go back to 
the potential compromised users.  

Bayesian networks have been widely adopted in the area 
of security analysis with rather diverse purposes. For 
example, [19] measures the network security risk by 
introducing the notion of dynamic Bayesian networks in 
order to include temporal factors in the analysis. The authors 
in [20] use a Bayesian network approach to evaluate the 
effects of different placements of intrusion detectors within a 
distributed system. The modeling of the behavior of the 
attacker via Bayesian networks is proposed in [21]: the 
authors aim to evaluate the risk level of critical resources. 
More recently, [22] adopts a Bayesian network model to deal 
with the uncertainty of the stages of security attacks. 

Bayesian network approaches, applied to the design of 
more effective intrusion detection systems, are closer to our 
work. The strategy described in [23] unifies misuse- and 
anomaly-based detection to identify both well-known and 
zero-day attacks. The authors in [24] deal with the analysis 
of the features of the system calls, such as, string length and 
character distribution, to detect ongoing attacks. Finally, [25] 
extends the open-source Snort intrusion detection system by 
including a further processing stage, based on Bayesian 
networks, to reduce the number of false alarms.  

In this paper, we attempt neither to develop nor to 
improve an existing low-level detection tool. Instead, we 
propose a Bayesian network approach, which has been 
designed on the top of the monitoring tools available at the 
NCSA infrastructure, to support the system administrators in 
the task of identifying compromised users.  

III. TARGET SYSTEM AND SECURITY DATA 
The study encompasses the data on credential stealing 

incidents collected at NCSA at 2008-2010 timeframe. 
Credentials stealing incidents can occur in virtually any 
network that is accessible from the Internet (e.g., social 
networking sites, email systems, corporate networks 
allowing VPN access) or from an intranet or a business 
network managed by an IT department within a corporation. 
For this reason, the key findings of this study can be used to 
drive the design of better defensive mechanisms in 
organizations other than the NCSA. 

The NCSA computing infrastructure consists of about 
5,000 machines (including high-performance clusters, small 
research clusters and production systems, such as mail and 
file servers)  accessed by  worldwide users.  Fig. 1 provides a  
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Figure 1. Overview of the target system. 
 
 
high-level overview of the target system. Users log into the 
system remotely, by forwarding their credentials through the 
public network via the SSH protocol. Credentials might have 
been stolen. Thus, an attacker can masquerade as the 
legitimate user and penetrate the system – the user is 
compromised. The security monitoring tools deployed in the 
NCSA network infrastructure are responsible for: (i) alerting 
about malicious activities in the system, e.g., a login from a 
blacklisted IP address or the occurrence of suspicious file 
downloads and (ii) collecting (in security logs) data relevant 
to detected incidents. An in-depth analysis of the security 
logs can then be used to identify compromised users.  

In the following, we describe the alerts produced in case 
of incidents involving credential stealing (selected according 
to results in [4]). The process of relating the alerts to the 
potential compromised users is also discussed.  

A. Data and alerts 
The log produced by the target machines, collected with 

the syslog protocol, is used to identify the users, which 
access the infrastructure. To this aim, we extract from the 
system logs the entries reporting the occurrence of a remote 
login: 

 
 

month day hh:mm:ss NODE sshd[*]: Accepted AUTH_MEC 

for USER from IP_ADDR port PORT ssh2, 
 

Note that the login might have been performed with stolen 
credentials and thus, the entry in log may represent the 
starting point of a security incident.  

The NODE field denotes the machine of the infrastructure 
reporting the message. AUTH_MEC is the authentication 
mechanism used to perform the login, e.g., password or 
gssapi-with-mic. USER is the username chosen by the 
legitimate owner of the account and IP_ADDR denotes the 
external address the logging comes from.  The analysis of 
these fields is valuable to deal with incidents conducted with 
stolen credentials. For example (as it will be detailed in 
Section III-B), the timestamp and the NODE information can 
be used to relate the alerts raised by the security tools to the 
users that potentially triggered the alerts. Furthermore, each 
time a specific user logs into the system, NODE, AUTH_MEC, 
and IP_ADDR are stored in a database, with the aim to create 
the user profile based on the history of his/her past 
connections to the system.  

In the following, we describe the alerts produced by the 
monitoring tools. Due to space limitations, the focus is on the 
alerts triggered in case of incidents conducted with stolen 
credentials [4]. An id has been associated to each alert and 
used throughout the remaining of this paper. First, we 
discuss alerts that can be triggered when the login violates 
the user profile. The detection of potential violations is done 
by checking login and profile data against rules set in Simple 
Event Correlator (SEC) [3]: 

• unknown address (A1): login comes from a 
previously unknown IP address, i.e., the user never 
logged from that IP according to his/her profile;  

• multiple login (A2): the same external IP address is 
used by multiple users to log into the system; 

• command anomaly (A3): a suspicious command is 
executed by the user; 

• unknown authentication (A10): according to the 
profile data, the user has never logged into the 
system by using that authentication mechanism; 

• anomalous host (A11): the login is reported by a 
node within the infrastructure that has never been 
used by the user; 

• last login > 90 days (A12): the last login performed 
by the user occurred more than 90 days before the 
current one. 

In most of cases, the occurrence of a profile alert, alone, 
does not provide the definitive proof that the user has been 
compromised. For example, A1 is raised each time a user 
(legitimate or not) logs for the first time from a remote site 
that is not stored in the profile.  In order to increase the 
chance of correctly detecting compromised users, the 
analysis of profile alerts is combined with the data provided 
by the security tools, e.g., IDS and NetFlows (Fig. 1), 
available at the NCSA network infrastructure. In the 
following, we describe the security alerts used in the 
detection process:  

• HotClusterConn (A4): a node of the computing 
infrastructure performs a download, although it is 
never expected to execute this action. An additional 
alert (A13) is introduced to indicate that the 
downloaded file exhibits a sensitive extension, e.g., 
.c, .sh, .bin, .tgz; 

• HTTP (A5) and FTP (A9) Sensitive URI: these alerts 
are triggered upon detection of well-known exploits, 
rootkits, and malwares; 

• watchlist (A7): the user logs from a blacklisted IP 
address; the list of suspicious addresses is hold and 
distributed among security professionals; 

• suspicious download (A14): a node of the computing 
infrastructure downloads a file with a sensitive 
extension.  

Finally, two further alerts, i.e., (A6) and (A8) have been 
designed by combining profile and security data. Alert (A6) 
is generated whenever the remote IP address used to perform 
a login is involved in subsequent anomalous activities, such 
as a suspicious file download.  Similarly, the alert (A8) is 
generated if a user responsible for a multiple login is 
potentially related to other alerts in the security logs. 
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It should be noted that an event could trigger more than 
one alert. For example, the download of a file with a 
sensitive extension, performed by a node that is not supposed 
to download any file, can trigger the alerts A4, A13, and 
A14. While the occurrence of a profile alert leads to an initial 
level of suspiciousness about the user, a set of subsequent 
notifications, such as command anomalies or suspicious 
downloads, might actually represent the symptoms of an 
ongoing system misuse. Correlating multiple data sources is 
valuable to improve the detection capabilities and ruling out 
potential false alarms. 

B. Automating the analysis of the alerts  
The timely investigation of the alerts is crucial in 

identifying compromised users and initiating proper recovery 
actions. However, the analysis can become a time-
consuming activity because of the need to correlate alerts 
coming from multiple sources. In order to automate the alerts 
analysis we developed a software tool 2  to: (i) parse the 
content of heterogeneous security logs and (ii) produce a 
more suitable representation of the security data for 
facilitating the Bayesian network approach. 

Given the data logs (both syslogs and logs produced by 
the security tools) the tool returns a user/alerts table, which 
provides: (i) the list of users that logged into the system 
during the time the logs have been collected and (ii) a set of 
14-bit vectors (one for each user), with each bit of the 
vectors representing one of the alerts introduced in Section 
III-A. Given a user, a bit in the vector assumes value 1 if at 
least one alert of that type (observed in the security log) has 
been potentially triggered by that user. In order to illustrate 
the concept, Fig.2 shows a hypothetical user/alerts table. For 
example, a binary vector of [10010000001000] is associated 
with user_1, which indicates that during the observation 
period, the user_1 was potentially responsible for triggering 
three alerts: unknown address (A1), HotClusterConn (A4), 
and anomalous host (A11).  

 
In the following, we describe the procedure 

(implemented in the tool) to infer the user that potentially 
triggered an alert that is observed in the security log. The 
procedure is relatively simple for the profile alerts. For 
example, the unknown address and the command anomaly 
alert have the following formats, respectively. 

 
 

 

SEC: no IP entry for user USER in the database 

 

 

User USER attempting to execute command ‘uname -a’ 
COMMAND on command line. 
 
 

In both cases, USER denotes the specific user who 
triggered the alert. In particular, the command uname -a is 
flagged as anomalous, since it is often used by attackers to 
obtain information about a node, e.g., the kernel version and 
the hostname. The obtained information can be subsequently 
used to execute an exploit. 

 

                                                           
2 The tool runs under the Linux operating system and consists of a set of 
bash scripts. 

   alerts
 
users 

A
1 

A
2 

A
3 

A
4 

A
5 

A
6 

A
7 

A
8 

A
9 

A
10 

A
11 

A
12 

A
13 

A
14 

user_1 1 0 0 1 0 0 0 0 0 0 1 0 0 0

user_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

…               

user_N 0 0 0 0 0 0 1 0 0 0 0 1 0 0

Figure 2. Example of user/alerts table. 

 
In practice, not all alerts provide enough contextual 

information to determine the responsible user.  Let consider 
an example,for the HotClusterConn alert 
 
t=1274736822 HotClusterConn sa=SRC_IP sp=58281/tcp 

da=DST_IP dp=80/tcp p=80/tcp method=GET url=[…]. 
 

In this example, the timestamp and the originating node are 
given by the t= and sa= fields, respectively. While we know 
that the alert is triggered on May-24-2010 at 23:33:42, it is 
difficult to pinpoint the user responsible for the alert.  

In such cases, we adopt a time-based approach to identify 
a set of users that potentially triggered the specific alert. 
More precisely we: (i) extract the timestamp and the 
originating node id from the alert data, (ii) identify (based on 
the data in the log of the node that raised the alert) all users 
that logged in to that node in the interval [t-Δ; t] (where 
t denotes the timestamp of the alert and Δ is a fixed time 
window), and (iii) flag as suspicious all users identified with 
this procedure as potentially responsible for this alert. The 
time window Δ is assumed 3 hours in the context of this 
work. The analysis of the data shows that an attacker is likely 
to initiate the misuse in a relatively short time after he/she 
breaks in to the system. A time window of 3 hours is thus 
sufficient to relate the alerts to the potential compromised 
user. When applying this procedure to our example, we flag 
as suspicious all users that logged on the node with id 
SRC_IP in the interval [20:33:42; 23:33:42]. 

IV. OVERVIEW OF THE DATA 
The study encompasses the data related to 20 security 

incidents initiated by using stolen credentials and occurred 
during the last three years, i.e., 2008-2010, at the NCSA. 
The NCSA security team comprehensively investigated 
each incident. The key findings of the investigations are 
summarized in [4]. The ground truth, i.e., the information 
about the actually compromised users, the reports describing 
the system misuse, and the proposed countermeasures, is 
available for each incident considered in this study. This 
detailed knowledge allows validating the effectiveness of 
the proposed approach after the design. Out of the 20 
incidents, 3 have been detected after a third-party 
notification, i.e., someone outside the NCSA indicated the 
occurrence of anomalous activities, and 1 incident was a 
false positive (it was erroneously concluded that the user 
had been compromised). These four borderline cases are 
discussed in Section VII.B.  

In order to characterize the ability of each alert Ai (1 ≤ i 
≤ 14) to detect compromised users,  we estimate the average  
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Figure 3. Average number of users (per day) flagged as potentially 
responsible for each alert Ai 

 

 
 

Figure 4. Number of compromised users, which trigger an alert Ai 

 
number of users per day, that are flagged as potentially 
responsible for Ai. This measure is assessed by analyzing 
the logs collected during the day the incident occurred. The 
logs have been processed with the tool presented in Section 
III-B to obtain the user/alerts tables. Fig. 3 reports the 
average number of users per day flagged as potentially 
responsible for an alert considered in our analysis. Note that 
there is a significant variability in the occurrence frequency 
of different alerts. For example, the  watchlist (A7) alert is 
observed for only 2 users during the entire observation 
period (which spans the 16 incidents analyzed in this study).  
In both cases, the user was actually compromised. In the 
context of our analysis, the watchlist is considered as a 
reliable alert, since it has a small number of occurrences 
(0.125 users/day) and no false positives. On the other end of 
the spectrum is HotClusterConn (A4) alert, which has high 
occurrence frequency (64 users/day) and relatively high 
false positive rate (most of the users, flagged as responsible 
for this alert, are not actually compromised).  

The detection capability is another important feature of 
the alerts. The detection capability is assessed by extracting 
(from the user/alerts tables generated for the 16 analyzed 
incidents) the 14-bit vectors for each compromised user. 
Recall that the actually compromised users (i.e., the ground 
truth) are known for each incident. There are a total of 20 
compromised users in the incident data. Fig.4 shows how 
many compromised users (y-axis) are responsible for the 
specific alert types (x-axis).  Comparison of this data with 
the one presented in Fig.3 indicates that the alerts with the 

largest number of potentially responsible users are also likely 
to be observed when the user is actually compromised. For 
example, around 20 users per day trigger an unknown 
address (A1) alert (see Fig. 3); however, while most of these 
alerts turn out to be false positives, in 14 out of 20 cases (as 
reported in Fig. 4) an actually compromised user triggers this 
alert. Similarly, the HotClusterConn (A4) alert leads to many 
false positives; nevertheless, it is likely to be triggered by 
compromised users (6 out 20 cases). 

The fact that alerts are often inconclusive could suggest 
that it might be hard to identify compromised users based on 
the alert data available in the security log. However, our 
analysis shows that an actually compromised user is related 
to more than one alert. In our study, in the average, 3 unique 
alerts are related to a compromised user for each analyzed 
incident, such as the joint occurrence of the unknown 
address, command anomaly, and HotClusterConn alert. 
Consequently, it is feasible to correlate multiple alerts by 
means of statistical techniques, in order to discriminate 
between cases where unreliable alerts can be just discarded, 
from the ones where an alert provides a stronger evidence for 
the user to be compromised. 

V. PROPOSED APPROACH 
Security logs are processed using the tool introduced in 

Section III-B to produce: (i) the list of users who logged into 
the system during the entire time interval the logs are 
collected and (ii) the bit vector reporting alerts potentially 
related to a given user. Using this information, our objective 
is to estimate the probability of a user to be compromised.  

A. The model: Bayesian Network 
A data-driven Bayesian network [5], [6] approach is 

proposed to facilitate identification of compromised users in 
the target infrastructure. A Bayesian network is a direct 
acyclic graph where each node of the network represents a 
variable of interest in the reference domain. The network 
allows estimating the probability of one or more hypothesis 
variable(s) given the evidence provided by a set of 
information variables. In the context of this work, the 
hypothesis variable is “the user is compromised”, while the 
information variables are the alerts related to the user. 

We model the problem using a naïve Bayesian network, 
i.e., a single hypothesis node is connected to each 
information variable. It is assumed that no connections exist 
among the information variables. The structure of the 
network is shown in Fig.5. A naïve network estimates the 
probability of the hypothesis variable by assuming the 
independency of the information variables. In other words, 
given a user, the presence of an alert in a bit vector does not 
affect the probability of observing the other alerts. A set of 
vectors (the ones composing the training set described in 
Section V-B) is used to validate the assumption on 
independence of information variables. For each 
combination of the alerts (Ai, Aj) (for i, j∈{1, 2, 3, …, 14}), 
we count how many vectors in the training set contain Ai, Aj, 
or both Ai Aj. Then, the chi-squared test [9] is applied to 
verify the null hypothesis H0, i.e., the pair of alerts, Ai and 
Aj, is independent.  Out of  the  91  possible combinations of   
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Figure 5. Adopted network 
 
alert pairs, in 28 cases (around 30% of the combinations) the 
chi-squared test (with 95% significance level) indicates that 
H0 has to be rejected. Regardless, for majority of the cases 
the assumption of alerts independence still holds and hence, 
it is reasonable to adopt a naïve Bayesian network in the 
context of our analysis.  

It has to be noted that, assuming the independence for a 
pair of dependent alert, leads to the overestimation of the 
statistical evidence provided by the joint occurrence of the 
alerts. For this reason, by neglecting the dependencies among 
the information variables, it might happen that the a-
posteriori probability of the hypothesis variable “the user is 
compromised” is greater than the real value. Consequently, 
the assumption of alerts independence makes the analysis 
more conservative; however, more importantly, it does not 
compromise the detection capability of the adopted Bayesian 
network.  

B. Training of the Bayesian network 
We use the logs collected in a subset, i.e., 5 out of 16, of 

the available incidents as training set of the network. Let T 
denote the adopted training set. T consists of 717 users (and 
corresponding bit vectors) and encompasses 6 compromised 
users. T contains the minimum number of training incidents, 
ensuring that almost all the alerts are covered by the actually 
compromised users, as shown in Fig.6 (comp_i denotes a 
compromised user). The strategy taken in this study has two 
main advantages (i) it allows analyzing the performance of 
the Bayesian network with conservative assumptions, i.e., 
only few training incidents are considered, and (ii) it does 
not bias the results, because all the adopted alerts are 
represented by the training set. Although other criteria might 
have been adopted, this selection of the training set is 
reasonable to conduct a preliminary analysis of the 
performance of the proposed approach. 

 
    alerts 
 
users 

A
1 

A
2 

A
3 

A
4 

A
5 

A
6 

A
7 

A
8 

A
9 

A
10 

A
11 

A
12 

A
13 

A
14 

comp_1    1         1 1

comp_2 1  1       1 1    

comp_3  1  1    1     1 1

comp_4 1     1         

comp_5    1   1       1

comp_6     1         1

Figure 6. Alerts related to the compromised users for the incidents  
 in the training set 

TABLE I.  STRUCTURE OF THE CPT FOR EACH ALERT AI 

 compromised (C) 

alert (Ai) true false 

true P(Ai|C) P(Ai|¬C) 

false P(¬Ai|C) P(¬Ai|¬C) 

 
The training stage allows tuning the network parameters, 

i.e.,  (i) the a-priori probability of the hypothesis variable 
and (ii) the conditional probability table (CPT) for each 
information variable Ai. The a-priori probability of the 
hypothesis node C (Fig.5) is estimated as P(C) = 6/717 = 
0.008. Calculating CPTs needs additional effort. Four 
parameters must be estimated for each alert as shown in 
Table I. For example, P(Ai|C) denotes the probability that an 
alert of type Ai is related to the user, given the user is 
compromised. Similarly, P(Ai|¬C) represents the probability 
that an alert of type Ai is related to the user, given the user is 
not compromised.  

The probability values of the CPTs are estimated as 
follows. The overall number of users in the training set T is 
divided into two disjoint subsets: good and compromised. 
Let G and C denote the two subsets, respectively. Note that 
|T| = |G| + |C|. For each alert Ai, let Li be the set of users 
(good or compromised) of the training set T, exhibiting that 
type of alert, e.g., all the users in T responsible for a 
command anomaly alert. P(Ai|C) is the ratio |Li ∩ C| / |C|, 
i.e., the cardinality of the intersection of Li and C divided by 
the cardinality of C. Similarly, P(Ai|¬C)=|Li ∩ G|/|G|, i.e., 
the cardinality of the intersection of Li and G divided by the 
cardinality of G. P(¬Ai|C) and P(¬Ai|¬C) are the 
complement to 1 of P(Ai|C) and P(Ai|¬C), respectively.  

Table II summarizes obtained results. It can be noted that 
P(Ai|C) assumes a relatively high value, which depends on 
the number of compromised users included in the training set 
T. Furthermore, P(Ai|¬C) is a measure of the quality of the 
alerts, in terms of the number of false positive they are likely 
to raise. For example, there is a high chance for a not 
compromised user to be responsible for an unknown address 
(A1) or HotClusterConn (A4) alert. Similarly, the chance to 
observe a watchlist (A7) alert if the user is not compromised 
is extremely low. These probability values confirm the 
results discussed in Section IV. 

TABLE II.  VALUES OF P(AI|C) AND P(AI|¬C) COMPUTED FOR EACH 
ALERT OF THE NETWROK 

 A1 A2 A3 A4 A5 A6 A7 
P(Ai|

C) 0.333 0.166 0.166 0.500 0.166 0.166 0.166 

P(Ai|
¬C) 0.042 0.022 0.012 0.303 0.021 0.001 0.001 

 A8 A9 A10 A11 A12 A13 A14 
P(Ai|

C) 0.166 0.001 0.166 0.166 0.001 0.500 0.833 

P(Ai|
¬C) 0.019 0.001 0.011 0.012 0.001 0.240 0.527 
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By means of the proposed Bayesian network, given a 
user and the related vector of alerts, it is possible to perform 
the following query, i.e., “What is the probability P(C) for 
the user to be compromised given the user is responsible for 
0 or more alerts”. In the following, we analyze how P(C) 
varies across the incidents and investigate the possibility of 
using the network as the decision tool. 

VI. ANALYSIS OF THE INCIDENTS 
The effectiveness of the proposed approach is assessed 

using the incident data, which have not been used to train the 
network. The list of the incidents is given in the first column 
of Table III. The analysis consists in computing the 
probability P(C) for each user logged into the NCSA 
machines during the day the given incident occurred. Table 
III (the last column) gives the P(C) values computed for the 
actually compromised users (recall that the ground truth is 
known from the data). The results of this analysis allow 
selecting a classification threshold, i.e., a value for P(C) to 
discriminate compromised from not compromised users. 

A. Sample incidents 
Example 1: incident #5 (Table III), occurred on Jul-24-

2009. During the day the incident occurred, 476 users logged 
into the system. P(C) is estimated for each bit vector (i.e., 
user) in the user/alerts table computed for this incident. Fig.7 
gives the histogram of the number of users with respect to 
the observed P(C) values. For the majority of the users (410 
out of 476) the computed P(C) is 0.02%. Closer look into 
data reveals that none of these users is responsible for alerts 
observed in the security logs and hence, we can conclude 
those users are not compromised. 

In all the other cases, i.e., 66 out of 476, at least one alert 
(in the security log) can be associated with each user. These 
users are considered as potentially compromised. For 
example, during the day the incident occurred, 33 users 
triggered a multiple login alert. However, 24 of these alerts 
were false positives caused by a training class using the GPU 
cluster at the NCSA – all users logged from the same IP 
address. Consequently, the presence of the multiple login 
alert alone does not provide a strong enough evidence of a 
user to be compromised and the Bayesian network returns a 
small value of P(C) (i.e., 0.21%). The compromised user in 
the incident #5 exhibits a value of P(C) around 28.54% 
(dotted arrow in Fig.7). In this case, an unknown address, a 
multiple logins, and a command anomaly alerts are 
associated with the user.  
We also observed cases where a large value of P(C) is 
computed for not compromised user. For example, a user 
who jointly triggered an unknown address, multiple login, 
unknown authentication, and anomalous host alert, results in 
a probability value of 87.73%. Nevertheless, it has to be 
noted that the number of false indications produced by the 
Bayesian network is small. In the incident #5, only for three 
users the P(C) value is greater than the one computed for the 
actually compromised user (to the right of the dotted arrow 
in Fig.7). In this incident, the proposed approach brings the 
number of manual investigation of potentially compromised 
users down from 66 to 4. 

 
 

Figure 7. Example 1: histogram of the number of users for the observed  
P(C) values (incident  #5, occurred on Jul-24-2009) 

 

 
 

Figure 8. Example 2: histogram of the number of users for the observed  
P(C) values (incident #7, occurred on Apr-22-2009) 

 
Example 2: incident #7 (Table III), occurred on Apr-

22-2009. During the day the incident occurred, 446 users 
logged into the system. Fig. 8 gives the histogram of the 
number of users for the observed P(C) values. No alert is 
associated with 245 users (P(C) = 0.02%). In this incident, 
the security logs contain 22 notifications of suspicious 
download, i.e., 22 files with a sensitive extension are 
downloaded by some of the machines in the NCSA 
infrastructure. These alerts result in significant number of 
potentially responsible users (76 as shown in Fig. 8). Again, 
according to the training data, this alert alone does not 
provide strong enough evidence for a user to be 
compromised (P(C) = 0.11%). The P(C) for the user 
compromised in the incident #7 is 1.22% (dotted arrow in 
Fig. 8), which is a much smaller value as compared with the 
Example 1 (P(C) = 28.54%). Only two alerts – unknown 
address and suspicious download – are observed for the 
compromised user. These alerts are likely to generate many 
false positives as discussed in Section IV (Fig.3). 
Furthermore, closer look into data reveals that the same two 
alerts (unknown address and suspicious download) are also 
raised for 11 out of 12 not compromised users. As shown in 
Fig. 8, if P(C) = 1.22% is used as a threshold to identify 
compromised users, we end up with 16 false detections i.e., 
not compromised users would be flagged as compromised 
(all cases to the right of the dotted arrow in Fig. 8). As in the 
previous example, large P(C) (e.g., 78.35%) is observed for 
some of users even if they are not actually compromised.  

B. Discussion 
The described analysis is conducted for each incident in 

the validation set. The analysis results reported in Table III 
reveal that P(C), for different incidents, varies within a large  
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TABLE III.  LIST OF THE INCIDENTS AND P(C) VALUES OBSERVED FOR 
THE COMPROMISED USERS  

incident 
 

   ID                date 

#compromi-
sed users P(C)a 

1 May-03-2010 1 16.8% 

2 Sep-08-2009 1 99.3% 

3 Aug-19-2009 2 13.5%; 13.5% 

4 Aug-13-2009 1 4.3% 

5 Jul-24-2009 1 28.5% 

6 May-16-2009 1 0.7% 

7 Apr-22-2009 1 1.2% 

8 Nov-03-2008 1 28.5% 

9 Sep-07-2008 3 99.7%;99.9%;76.8% 

10 Jul-12-2008 1 44.6% 

11 Jun-19-2008 1 18.1% 
a. Assumed by the compromised users 

 
range of values. One can see that in all, but two cases 
(incidents #6 and #7), P(C) for the compromised users is 
relatively large. For the incident #6, a single alert, 
HotClusterConn, (with a sensitive extension) is associated 
with the compromised user. However, this alert, if observed 
alone, is quite unreliable. As shown in Fig.3 (A13), around 
43 users per day are potentially responsible for this type of 
alert. Our Bayesian network returns very small value for 
P(C) = 0.7%. 

As discussed, most of the suspicious users, i.e., the ones 
related to at least one alert, are not actually compromised: 
P(C) is generally small. This finding suggests that the 
Bayesian network can be used to remove the noise (false 
positives) induced by the alerts. In other words, it is feasible 
to define a classification threshold, i.e., P(C) that will allow 
suppressing a significant fraction of false positives while 
still identifying all compromised users.  

VII. SUPPORTING DECISION WITH THE BAYESIAN 
NETWORK APPROACH 

In this section the proposed Bayesian network is used to 
discriminate compromised from not compromised users by 
means of a classification threshold:  if the alerts related to a 
user result in a value of P(C) greater than the classification 
threshold, we assume that the user is compromised.  

A. Analysis of the incidents 
According to the results provided in Table III, the 

minimum classification threshold that allows detecting all the 
compromised users is 0.7% (this is the value of P(C) 
observed for the compromised user in the incident #6). This 
value is used to quantify the effectiveness of the Bayesian 
network approach.  

Table IV summarizes obtained results. Column 1 reports 
an incident in the validation set (the ID of the incident is the 
same as Table III). For each incident, column 2 reports the 
number of users that  logged into  the system during  the  day 

TABLE IV.  ANALYSIS OF THE INCIDENTS WITH THE BAYESIAN 
NETWORK APPROACH 

incident 
 

 ID    #users 

 
#susp 

TH. [≥0.7] 
 

#actn.   ratio 

TH. [≥1.2] 
 

#actn.   ratio 

TH [≥4.3] 
 

#actn.   ratio 

1 305 252 41 0.16 32 0.12 19 0.07 

2 477 122 29 0.23 27 0.22 14 0.11 

3 353 312 134 0.42 39 0.12 33 0.10 

4 309 203 34 0.16 28 0.13 13 0.06 

5 476 66 11 0.16 11 0.16 7 0.10 

6 491 7 1 0.14 0 0 0 0 

7 446 201 41 0.20 37 0.18 10 0.05 

8 447 251 62 0.24 50 0.20 43 0.17 

9 497 422 137 0.32 85 0.20 58 0.13 

10 193 118 9 0.07 3 0.02 3 0.02 

11 380 280 3 0.01 3 0.01 2 0.01 

avg. 398 221 50 0.20 29 0.12 19 0.07 

 
 
the incident occurred and column 3 provides the number of 
suspicious user, again, the ones related to at least one alert. 
Column 4 gives the number of actionable users, i.e., the 
subset of the suspicious users whose probability of having 
been compromised is ≥ 0.7%.  For each incident, the ratio 
between the number of actionable and suspicious users 
quantifies the effectiveness of the proposed approach at 
reducing the number of false indications/positives. The ratio 
is reported in column 5. For example, in the worst case 
(represented by the incident #3, where 134 out of 312 
suspicious users are actionable) the tool removes around 
58%, ((1 - 134/312)*100%) of false indications.  As shown 
in the last row of Table IV, the average ratio (estimated 
across all the incidents) is around 0.20 for the classification 
threshold set to 0.7%. In other words, for the analyzed data 
set the Bayesian network approach automatically removes 
around 80% of false positives (indicating an uncompromised 
user to be compromised). 

The effectiveness of the proposed strategy is bounded by 
the need for selecting a relatively low threshold. Actually, 
0.7% is a conservative value, which allows avoiding false 
negatives, i.e., missing actually compromised users. We 
analyze how the number of actionable users varies when the 
value of the classification threshold increases. Results are 
reported in columns 6 and 7 and columns 8 and 9 of Table 
IV, for the threshold values 1.2% and 4.3%, respectively. 
According to Table III, 1.2% and 4.3% are the next two 
smallest P(C) values observed in the analysis. The 
compromised user of the incident #6 is undetected when the 
threshold is 1.2%. However, the network removes around 
88% of false positives. Similarly, when the classification 
threshold is set to 4.3%, the compromised users of the 
incident #6 and #7 are undetected. In this case, the network 
removes around 93% false positives. 

Analysis results suggest also that the Bayesian network 
approach can help the system administrators by directing 
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toward the users that are likely to be compromised. After the 
security logs are collected, the tool can be used to obtain the 
list of the users exhibiting a particularly large value of P(C), 
e.g., all the users whose probability of being compromised is 
≥4.3%. This procedure eases the task of the administrators. 
As indicated in the last row of Table IV, in average, around 
19 users out 398, i.e., only 4% of all the users, which log into 
the NCSA during a normal day of operation, surpass the 
4.3% classification threshold. In the case when an actually 
compromised user is not detected (i.e., the classification 
threshold is set to large value), the analyst can decrease the 
threshold in order to augment the set of possible suspicious 
users to be investigated. 

B. Analysis of the borderline cases  
We also assess the effectiveness of the network for 

borderline cases, such as, incidents notified by third-party, 
or normal days, i.e., days where no incidents occurred. The 
analysis is conducted by using 0.7% as the classification 
threshold. Obtained results are summarized in Table V. The 
meaning of columns 2,3,4,5 is the same as in Table IV. 
Furthermore, for each case (if applicable) columns 6 and 7 
report the maximum observed P(C) and P(C) for the 
compromised user, respectively.  The main findings of the 
analysis are discussed in the following. 

External notifications. Three of the analyzed incidents 
are missed/undetected by the NCSA monitoring tools and 
are discovered because of notifications by external sources 
e.g., third party. Our tool is used to analyze the logs 
collected during the days the undetected incidents occurred, 
and, for each incident, the bit vectors in the user/alerts table 
are queried against the network. All compromised users are 
undetected with the proposed approach. The values of P(C) 
for the compromised users are 0.02% (external notif. #1 and 
#2) and 0.4% (external notif. #3), which are below the 
assumed classification threshold of 0.7%. In the two former 
cases, no alerts in the log seem to be generated by the 
compromised users. In the latter case, the only command 
anomaly alert is observed. This alert, if observed alone, does 
not provide strong evidence that the user is really 
compromised.  Since the Bayesian network approach relies 
on the low-level monitoring infrastructure, when no alert is 
triggered, it is not feasible to identify a compromised user. 

False positive. On Nov-03-2008 the NCSA security 
team is alerted for a login performed by a user that triggers 
an unknown address, a command anomaly, an unknown 
authentication, and an anomalous host alerts. The 
user/alerts table obtained from the logs collected during that 
day confirms the joint occurrence of these alerts. The 
computed value of P(C) is 92.9% and hence, it is reasonable 
to assume that the user is compromised. System 
administrators contacted the owner of the account, which 
confirmed his/her activity and that the login was legitimate.  
 

These cases enforce our earlier finding that alert 
correlation improves the ability of identifying compromised 

TABLE V.  ANALYSIS OF THE BORDERLINE CASES WITH THE 
BAYESIAN NETWORK APPROACH 

event 
 

 type (date)        #users 

 
#susp 

TH. [≥0.7] 
 

#actn.    ratio 

P(C) 
max 

 
P(C) a 

ex. notif. #1 
Apr-21-2009 

386 176 26 0.15 4.6% 0.02% 

ex. notif. #2 
Mar-18-2009 

269 179 63 0.35 96.3% 0.02% 

ex. notif. #3 
Feb-09-2009 

289 28 3 0.11 1.7% 0.4% 

 
false positive 
Nov-03-2008 

447 251 62 0.24 92.9% 92.9% 

 
norm. day #1 
Jun-30-2010 

323 227 25 0.11 87.7% - 

norm. day #2 
Jul-25-2010 

154 88 28 0.32 41.7% - 

 
new incident 
Oct-29-2010 

358 159 32 0.20 65% 9.4% 

a. Assumed by the compromised users (if applicable) 
 
users; however, the deficiencies of the low-level monitoring 
infrastructure (missing events or false notifications) can 
mislead analysis results. 

Normal days. We query the network with the user/alerts 
tables obtained with the logs collected during 2 normal days 
of operation, Jun-30-2010 and Jul-25-2010 (see Table V). 
The number of the actionable users, i.e., the users whose 
probability of being compromised is ≥0.7%, is small (25 and 
28, respectively). It can be noted that some users exhibit a 
high P(C). For example, during the normal day #1, P(C) is 
87.7% for a user, which jointly exhibits an unknown 
address, a multiple login, an unknown authentication, and 
an anomalous host alert. Again, the proposed strategy 
reduces the number of false indications due to not trusted 
alerts, however, if the user is potentially responsible for 
multiple alerts, P(C) is high even if the user is not actually 
compromised.  

New incident. We analyze the data collected during a 
recent incident occurred on Oct-29-2010 at the time the 
study was conducted. The incident is included neither in the 
training nor in the validation data set of the network. During 
the day the incident occurred, 358 users logged into the 
NCSA machines. Among them, 159 users raised alerts. The 
Bayesian network approach allows reducing the initial set of 
159 suspicious users to 32 actionable users. The 
compromised user is correctly included in the actionable set 
and detected (three alerts, i.e., unknown address, command 
anomaly, and HotClusterConn are raised by the 
compromised user: P(C) = is 9.4%). 

VIII. CONCLUSION 
The paper proposes a Bayesian network approach to 

support the detection of compromised users in shared 
computing infrastructures. The approach has been validated 
by means of real incident data collected during the last three 
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years at the NCSA. The results demonstrate that the 
Bayesian network approach is a valuable strategy to drive 
the investigations efforts of the security team. Furthermore, 
it is able to significantly reduce the number of false 
positives (around 80% with respect to the analyzed data). 
We also observed that the deficiencies of the underlying 
monitoring tools could affect the effectiveness of the 
proposed network.  

Future work will encompass the analysis of other 
categories of security incidents not only the credential 
stealing. To this aim, the network will be enhanced by 
introducing additional alerts. Furthermore, we will use this 
experience to design an on-line tool implementing the 
proposed strategy: streams of security alerts will be 
processed on-the-fly and enable timely recovery actions as 
soon as a reasonable evidence of an ongoing misuse is 
observed. 
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