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Abstract

Targeted inputs are input values for a program that lead to the execution
of a user-specified branch or statement. Targeted inputs are useful: In
debugging, for example, they allow programmers to follow the execution
towards the program point where a bug occurred. In testing, they constitute
a test case that covers a new piece of code. A natural approach to find
targeted inputs is symbolic backward execution. However, symbolic backward
execution struggles with complicated arithmetic, external method calls, and
data-dependent loops that occur in many real-world programs.
This dissertation describes symcretic execution, a novel method for effi-

ciently finding targeted inputs. Symcretic execution overcomes the limitations
of symbolic backward execution by integrating it with concrete forward ex-
ecution. The approach consists of two phases: In its first phase, symcretic
execution uses symbolic backward execution to find a feasible execution path
from the given target to any of the program’s entry points. Unlike prior
approaches, symcretic execution ‘skips’ over constraints that are problematic
for the symbolic decision procedure and defers their solution until the second
phase. The second phase of symcretic execution begins when the symbolic
execution reaches an entry point. In this phase, symcretic execution uses
concrete forward execution and heuristic search to find inputs that satisfy the
constraints that were skipped in the first phase. A comparison with related
approaches and an empirical evaluation suggest that symcretic execution finds
more inputs that result in relevant executions while avoiding the exploration
of uninteresting paths.

The heuristic search algorithm employed in the second phase of symcretic
execution must be able to handle complicated arithmetic and external method
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calls. The dissertation therefore introduces an algorithm called concolic
walk. The concolic walk algorithm also applies to solving path conditions in
customary symbolic and concolic execution and is thus presented in this more
general setting. The concolic walk algorithm is a heuristic search based on a
geometric interpretation of the task of finding inputs. An evaluation of the
algorithm shows that it finds more solutions (and hence improves coverage)
than the simplification-based heuristics that have been used in concolic testing.
Moreover, the concolic walk algorithm improves the effectiveness of state-of-
the-art concolic test generators that are using powerful specialized constraint
solvers.
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Chapter 1

Introduction

Our information society stands on fickle ground. Errors pervade the software
we use to write letters, buy books, listen to music, and talk to our family,
friends, and customers. Software errors crash rockets [44] and burn about
$60 billion through lost business every year [80].
Many software errors can be prevented by thorough testing, but testing

is rarely thorough because manually defining test cases is time-consuming
and expensive. Already, testing accounts for half of the costs of software
development [9]. Test generators (e.g., [66, 68, 18, 81, 40]) address this problem
by automating parts of the task. The NIST1 estimates that automated testing
tools can reduce the cost of software testing by about one third, saving billions
of dollars [80].

The goal of automatic test generation is finding a set of input values that
cover—lead to the execution of—a set of target statements in the program.
If the intention is to create a comprehensive test suite for the program, the
target set is any yet uncovered branch or statement. If the intention is to add
a new test case after a change to the program, the set may be a singleton
that only contains the changed statement. If the intention is to find bugs,
the target set may consist of suspicious statements such as 1/x, which may
trigger a division by zero error if there are inputs that set x to zero.

Regardless of the intention, efficient test generation is challenging because
programs often accept an astronomical number of input value combinations.2

Yet, the program processes many of these combinations along the same
execution path. For example, the conditional branch if (x > 0) processes all x

1National Institute of Standards and Technology
2A single 32-bit integer variable can have more than 8 ·109 different values. Two support

over (8 · 109)2 combinations.
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greater than zero along the true–path. Such inputs are equivalent in terms of
testing; they lead to observing the same behavior. Including more than one
representative from an equivalence class means repetition without gain.

Knowing the input equivalence classes can thus help to make testing efficient
as it allows avoiding repetition. The input classes of a program are determined
by the constraints that its conditional branch statements impose on the inputs
along the execution paths. For example, the conditional if (x > 0) establishes
two classes of inputs x: those greater than zero, and those at most zero.
Finding the input classes hence reduces to collecting the constraints along
the execution paths in the program [66]. The one needed representative input
combination for each path can be found by solving the constraints.

Unfortunately, there are two major challenges:

1. The set of constraints along an execution path is undecidable in general
because it may contain arbitrary non-linear integer constraints [24].
Even if the constraints are decidable, solving them may be computa-
tionally infeasible.

2. If the program contains loops, the number of execution paths can be
infinite. Even if all loops are bounded, the number of execution paths
can still grow exponentially in the path length.

Randomization and a combination of concrete execution with the symbolic
solving of the path constraints have been used to mitigate these challenges
when generating test suites [50, 91]. The resulting concrete–symbolic (con-
colic) approaches generate inputs that cover large parts of the program.
However, if execution paths contain complex arithmetic constraints, existing
ways of combining concrete and symbolic solving can be too weak to find
satisfying inputs. Furthermore, concolic approaches focus on overall coverage,
which limits their efficiency when trying to cover a single specific target.
There are two sources of inefficiency:

1. Guiding the concrete execution that drives these approaches towards
the target requires choosing the right inputs ahead of time. Wrong
inputs lead to the exploration of irrelevant program paths.
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2. The approaches lack a concept of unreachability. Even if an if-statement
such as if (x > 0) right before the target, for example a potential divi-
sion by zero such as 1/x, prevents covering the target, the explorative
approaches do not stop; they keep exploring paths in the hope of finding
covering inputs.

The goal of the research described in this dissertation is to find an effective
and efficient way of generating target-specific inputs without sacrificing the
advantages of concolic testing. To be effective in finding inputs, the developed
approach closely integrates symbolic and heuristic constraint solving. The
resulting novel algorithm (chapter 5) also applies to classic symbolic and
concolic input generation techniques, where it improves the strength of state-
of-the-art approaches. To be efficient in finding inputs, the developed approach
uses symbolic and concrete execution in two phases (chapter 3 and chapter 4).
The first phase, symbolic backward execution (section 4.2), tries to find a
feasible execution path from the target statement to an entry point. Going
backwards, it avoids exploring irrelevant paths that do not lead to the target.
Whenever the symbolic constraint solver faces an undecidability or exploration
problem, the execution skips the symbolic constraints—treating them as
potentially satisfiable instead of giving up like existing approaches [19, 21].
Once the symbolic execution reaches the beginning of a program entry point,
the second phase begins. The second phase, heuristic solving (section 4.3),
tries to find input values that satisfy previously problematic constraints by
concretely executing a trace of the program along the discovered path.

1.1 Thesis Statement

This dissertation focuses on the problem of generating inputs that cover a
user-specified target statement or condition in a program. The dissertation
describes a novel solution to the problem, called symcretic execution, that
can be more effective and efficient than classic input generation techniques.
Symcretic execution (1) avoids irrelevant paths that do not reach the target;
(2) excludes infeasible paths; (3) mitigates the aforementioned problems of
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undecidable constraints and data-dependent loops by integrating heuristic
constraint solving based on concrete execution of (parts of) the program. The
hypothesis investigated in this dissertation then is:

A combination of symbolic backward execution and heuristic constraint
solving can achieve high effectiveness and efficiency in generating target-
specific inputs for sequential programs that operate on primitive values.

1.2 Contributions

This dissertation contains the following research contributions:

• It defines symcretic execution, a novel method for finding inputs that
lead to the execution of a specific target in a program. Symcretic
execution is the first algorithm that integrates concrete execution into
symbolic backward execution.

• It introduces the idea of treating loops in the program as external
methods and solving them with heuristic search.

• It describes the concolic walk algorithm, a novel combination of symbolic
reasoning and heuristic search for solving complex arithmetic path
conditions. The algorithm is sound and complete for linear constraints
and supports non-linear constraints and calls to native library methods.
In the context of solving path conditions, it is the first to use a polytope
interpretation for linear constraints, and the first to exploit (potential)
piece-wise continuity of non-linear constraints.

• It contains an empirical evaluation of the effectiveness and efficiency of
these algorithms when applied to Java programs.
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Chapter 2

Background
and Related Work

The goal of automatic test generation is finding a set of input values that
cover a set of targets in a program. Among others, targets can be statements
or branches in the program; an input covers these if it leads to their execution.
Randomly generating the input values is fast and cheap [81], but often covers
only targets that lie on common paths [16]. It fails to discover the rare—but
all the more interesting—paths because drawing the right combination of
inputs from the large set of possible combinations is highly unlikely. For
example, narrow branch conditions such as x = x · y are unlikely to be met by
random values for x and y. Instead, most generated inputs will execute the
same path x 6= x · y, resulting in repeated tests of the same program behavior.
In general, random exploration of a large search space is prone to miss sparse
solutions.

2.1 Symbolic Testing

A systematic approach to generating test inputs is to use symbolic execu-
tion [66, 67, 14, 22, 60] to explore the program’s execution paths. Collecting
the constraints along a path and computing their solution yields input val-
ues that drive the program down this path1. Symbolic execution statically
analyzes a program by running it on symbolic input values. In contrast to
concrete values like the integer 42, symbolic values represent any element
from their domain. Thus, where concrete execution binds the integer inputs x

and y to 42 and 23, symbolic execution binds them to m ∈ Z and n ∈ Z.
Adding x and y under symbolic execution yields the symbolic value m+n ∈ Z.

1Assuming a deterministic program.
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If-statements on the execution path add constraints: if the path takes the
true-branch of the statement if (y>0), then n > 0. The path condition is the
conjunction of all constraints along the path. Test inputs can be generated
by systematically executing the different paths in the program and solving
the path condition. As opposed to random testing [81], symbolic execution
can therefore reliably discover error-triggering inputs even if their probability
of occurrence approaches zero.
The idea of using symbolic execution for testing goes back to King and

his interactive symbolic interpreter called EFFIGY [66, 67]. Shortly after
EFFIGY’s introduction, Boyer [14] and Clarke [22] presented similar systems
that replaced interactivity with concrete test input generation. These systems
collected the path constraints through forward substitution. At the same
time, Howden proposed an (unimplemented) symbolic testing method that
collected the constraints using backward substitution [60].
Test generation solely based on symbolic execution [65, 112, 17, 28, 16,

84, 5, 54, 4] is limited by the power of the used constraint solver. Recent
generalizations allow symbolic execution to handle references [91] and object-
oriented languages [65, 27, 29]. However, if an execution path contains a
constraint that lies outside the solver’s theory, the test generator cannot find
concrete input values that drive the program down this path. Examples of
such constraints are cryptographic hash functions and system calls whose
effect depends on the program’s environment [50]. General decision procedures
exist only for rather limited theories; the satisfiability of a system of non-linear
integer equations is undecidable in general [24]. Furthermore, constraints
whose solution takes too long can be considered undecidable in practice.

2.2 Concolic Testing

Concrete execution does not suffer from the limitations of a constraint solver;
to compute the effects of a system call, concrete execution simply issues the
call. The insight behind concolic execution2 [113, 50, 91] is that concrete

2Concolic execution is also known as Dynamic Symbolic Execution (DSE) and Directed
Automated Random Testing (DART).
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and symbolic execution complement each other. Concolic testing executes a
program on concrete values and collects the symbolic constraints along the
followed path. After the program has finished, negating one of the constraints
and solving this new path condition yields a set of concrete inputs that drives
the program down a different path. Thus, concolic execution covers paths at
most once; it avoids the repetitions of random testing. Furthermore, following
the concrete execution eliminates the need to symbolically reason about the
correct number of loop iterations. At the same time, concrete values allow
for simplifying constraints outside the solver’s theory. For example, replacing
a symbolic value m with its concrete value 23 converts the constraint mn > 0

into the easily solvable linear constraint 23n > 0.
The combination of concrete and symbolic execution has been proposed

by Godefroid et al. [50] and extended to programs using pointers by Sen et
al. [91]. It has received wide attention in the software engineering community:
Godefroid et al.’s paper [50] has been cited over 1300 times; Sen et al.’s
paper [91] over 900 times3. The approach has proved its ability to cope with
realistic sequential programs and is the foundation of several state-of-the-art
testing tools used in industry [103, 51, 52].

2.3 Path Condition Solving

A drawback of the simplification of concolic execution is blind commitment
to a concrete value: after setting m = 23, branches further down the ex-
ecution path that require m 6= 23 can no longer be explored [49, 86]. In
addition, simplification can yield coarse approximations of the constraints
(see chapter 5).

Instead of eagerly committing to a concrete value when a constraint exceeds
the solver’s capabilities, other blends of symbolic and concrete execution delay
simplification. For example, mixed concrete–symbolic solving [86] tries to
leverage concrete execution to solve undecidable arithmetic constraints during
symbolic execution. To solve a path condition, mixed solving splits the path

3According to Google Scholar on Apr. 3, 2014.
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condition into decidable and complex constraints, solves the decidable ones
directly, and uses the solution to simplify and concretely execute the complex
constraints. The execution results, in turn, serve to simplify the decidable
constraints. A similar separation between simple and complex constraints
has been used in solvers based purely on randomization and path condition
simplification [97, 98]. The concolic walk algorithm introduced in chapter 5
also employs separation but achieves significantly better performance.

In the converse direction, Gotlieb and Petit [55, 56] show how to facilitate
random testing of specific program parts by constructing a domain for uni-
formly sampling inputs that satisfy a path condition. The approach is based
on constraint propagation and refutation. It cannot handle uninterpreted
functions or bit-wise operations in the path condition.
Other approaches seek to extend the capabilities of arithmetic solvers

by integrating concrete execution. The CORAL solver [94] uses Particle-
Swarm Optimization [64] to solve constraints that include rich mathematical
operations like exponentiation and trigonometric functions. A recent ex-
tension [13] improves CORAL’s efficiency by seeding the initial solution
population through interval solving. FloPSy [70] is a plugin for Pex [103]
that solves floating-point constraints with heuristic search. While performing
well within their specific domain, these solvers are closed and lack callback
interfaces to include in the constraints previously unknown functions such as
native methods in Java.

2.4 Path Exploration Heuristics

Efficient path exploration is a central challenge for symbolic and concolic
test generators: Loops and recursion can lead to an infinite number of paths.
Even if the path length is limited, the branches introduced by if-statements
can result in an exponential number of paths.
Finding relevant paths and achieving good coverage with the generated

test cases therefore depends on efficient search techniques. One strategy
for systematic path exploration is to use depth-first search with iterative
deepening [112]. Other heuristics try to increase the overall program coverage,
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for example through randomization [15], or by picking the fittest path for
exploration in each iteration [115]. However, it seems unlikely that simple
heuristics will be effective in finding rare events in a search space as large as
that of the execution paths of a program.

2.5 Backward Execution

Another strategy is to search backwards: starting from the desired event, the
search spreads backwards through the program until it reaches an entry point.
Backward analysis is the foundation for several heuristics that guide symbolic
forward execution towards a target instruction. Similarly to backward slic-
ing [104], Zamfir and Candea [117] compute which control flow edges must
be passed to reach the goal. Among the paths containing these edges, they
prioritize the paths with the lowest estimated number of operations. Ma et
al. [73] propose a search heuristic that follows the call-chain backwards from
the target method. Inside each method, they use forward search to find the
call site. Do et al. [35] use the chaining approach of Ferguson and Korel [38]
to guide concolic execution towards uncovered code elements. The chaining
approach chooses different inputs for a branch’s reverse dependencies when it
must take the branch but cannot solve it.

Backwards search is a fundamental search strategy of constraint logic pro-
gramming (CLP). CLP adds numerical constraints to logic programming and
therefore supports the major components of symbolic execution: inference
with backtracking, symbolic reasoning over numerical values, and symbolic
reasoning over data structures (terms). Using backwards search, CLP can
therefore be used for the symbolic backwards execution of programs. How-
ever, existing approaches [5, 54, 53, 21] delegate the scalability challenges of
symbolic execution to the CLP environment. Since the CLP environment is
domain-general, it cannot employ optimization to accelerate the search for
feasible execution paths. Hence, it is unlikely that the approach will be able
to handle realistic programs. In addition, CLP environments are typically
closed, meaning that they cannot easily include external functions in the
constraints.
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Backwards execution is also common in data-flow analysis. Building on
the IFDS data-flow framework [88], Chandra et al. [19] develop a backwards
analysis that symbolically computes the weakest pre-condition of a target
instruction. The tool, called Snugglebug, achieves scalability by constructing
the call graph on-demand, which shrinks the search space. Like compositional
symbolic execution [48, 6], Snugglebug lazily expands called methods [74]
and summarizes their effects. The PSE tool by Manevich et al. [76] likewise
uses backwards analysis based on IFDS. It focuses on detecting typestate [96]
violations like dereferenced null-pointers, which it detects by applying the
effects of operations to the reversed typestate automaton.

2.6 Search-Based Software Testing

Combinations of heuristic search and symbolic reasoning have been explored
in the context of search-based software testing (SBST) [78]. Like concolic
testing, SBST searches for test inputs that meet a coverage criterion. In
contrast to concolic testing, it relies on heuristic search instead of a symbolic
constraint solver to find such inputs. SBST iteratively selects inputs that,
according to a fitness function, seem closer to a solution. However, inputs can
vary in granularity, ranging from primitive values to method sequences for
constructing objects. Common heuristics for finding better inputs are genetic
algorithms (GA), as well as the alternating variable method [68], which is
similar to adaptive search [23].

Heuristic search can be slow in discovering the specific solutions of narrow
branch conditions like m = 42. A number of approaches thus suggests to accel-
erate the search through symbolic reasoning: The Evacon tool [62] constructs
high coverage tests for object-oriented programs by alternating between gener-
ating method sequences for object creation via GA, and generating primitive
method arguments via concolic execution. Other techniques introduce a
mutation operator in the GA that yields new test individuals by concolically
executing an existing test and flipping a branch condition [75, 43]. Symbolic
execution has also been used to derive fitness functions that represent the
search landscape more accurately [8], leading to more efficient search.
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Chapter 3

Overview
of Symcretic Execution?

This chapter demonstrates the general ideas behind symcretic execution. The
next chapter formalizes and evaluates the algorithm. Chapter 5 describes an
algorithm that is suitable for the concrete phase of symcretic execution.

3.1 Motivation

Suppose that during a code review and cleanup, we discover that the test suite
fails to throw the exception on line 15 of the program shown in Figure 3.1. To
add a test case that covers this line, we have to find inputs for an entry point
of the program that lead to the execution of this line. However, manually
deriving such targeted inputs is tedious and can be complicated. For example,
the challenges method in Figure 3.1 must be called with the input x = 1024 to
satisfy the first error condition, res == 8192, on line 13.

Instead of manual derivation, automated test generation techniques such as
concolic execution can be used to find targeted inputs. However, the goal of
concolic execution and other automated test generation techniques is not to
cover a specific target, but to achieve high overall coverage. These techniques
try to explore as much of a given program as possible to discover a bug, or to
generate a test suite that is as complete as possible. In contrast, our objective
is similar to that of symbolic backward execution [14, 19, 21] (SBE): instead
of covering as much as possible, we are interested in covering specific, relevant

?This chapter and the next are based on the paper Targeted Test Input Generation Using
Symbolic–Concrete Backward Execution by Peter Dinges and Gul Agha, which appeared
in the proceedings of 29th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2014) [32, 33]. Permission to reprint has been granted by ACM.
http://dx.doi.org/10.1145/2642937.2642951
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1 public void challenges(int x, double u) {
2 int res = 0;
3 int i = 0;
4 while (i < x) {
5 int tmp = i % 2;
6 if (tmp == 0) {
7 res = res − 1;
8 } else {
9 res = res + 17;

10 }
11 i++;
12 }
13 if (res == 8192) { // Error condition 1
14 if (Math.sin(u) > 0) { // Error condition 2
15 throw new AssertionError();
16 } else ... // Long and deep computation
17 } else ... // Long and deep computation
18 }

Figure 3.1: Example program whose data-dependent loop (line 4), non-linear
integer arithmetic (line 5), and call to an external method (line 14) make
it hard for symbolic execution to find inputs that trigger the exception in
line 15.

targets in a program. Any part of a program that does not contribute to this
goal (for example lines 16 and 17 in Figure 3.1) is irrelevant.

SBE starts at the target and explores the program in the opposite direction
of normal (forward) execution until it reaches an entry point (e.g., a public
method). During the exploration, it maintains the path condition of the
followed path. After reaching an entry point, it solves the path condition to
obtain concrete inputs that lead to the execution of the target. For example,
if the target is line 7 in Figure 3.1, the execution starts on this line and steps
backwards, collecting the constraint tmp = 0. Moving further towards the
top, it constructs the path condition

tmp = 0 ∧ tmp = i mod 2 ∧ i < x ∧ i = 0 ∧ res = 0.

Solving the path condition yields an input (such as x = 1) that would trigger
the execution of the desired target line 7. However, SBE faces the challenges
mentioned in chapter 1:
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1. The modulo operation on line 5 forces state-of-the-art decision pro-
cedures such as the Z3 SMT1 solver [25] to reply unknown after few
traversals of the loop.

2. The Math.sin method on line 14 is native and may not have an interpre-
tation in the solver.

3. The data-dependent loop on line 4 must be traversed 1024 times to
yield res = 8192, which may exceed the exploration budget.

3.2 Algorithm Synopsis

Following the general idea of concolic execution, we propose to overcome the
aforementioned drawbacks of symbolic backward execution by combining it
with concrete execution. Symcretic execution consists of two phases:

Phase I: Symbolic Backward Execution

The first phase of symcretic execution uses symbolic backward execution to
find a feasible execution path from the target statement to an entry point.
Specifically, starting from the target statement, it explores the program’s
control-flow graph backwards and uses an abstract interpreter to construct
the path condition. Branches in the search path, for example statements with
multiple predecessors or call-sites of virtual methods, are explored depth-first.
After each search step, the algorithm checks the satisfiability of the current
path condition with a symbolic decision procedure. The search continues if
the path condition is satisfiable. It backtracks if the condition is unsatisfiable.
If the decision procedure cannot answer the query, the algorithm removes
the most recent constraint from the path condition, treating it as potentially
satisfiable and deferring its solution to the second phase.

Phase I also constructs a trace of the program along the followed path. At
each search step, the algorithm prepends the trace with the current statement,

1Satisfiability Modulo Theories
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1 public void simplified_challenges(int x, double u) {
2 int res = x + 23;
3 if (res == 8192) {
4 if (Math.sin(u) > 0) {
5 throw new AssertionError();
6 }
7 }
8 }

Figure 3.2: Program from Figure 3.1 without the loop.

regardless of whether it was removed from the path condition or not. For
removed statements, the algorithm furthermore adds a call to the special
change() method that marks the statement’s result as needing adjustment
in the second phase. Because the search follows a single execution path, if-
statements and other conditionals are not directly added to the trace. Instead,
the algorithm adds a call to the special fit() method that signals which of the
conditional’s branches the search traversed. Boolean connectives of conditions
are encoded in the control-flow, which implies that all conditions along the
path are non-compound and valid inputs must satisfy their conjunction. Once
the search reaches the beginning of an entry point, the second phase begins.

Phase II: Concrete Execution

The second phase of symcretic execution uses heuristic search on the trace to
find input values that satisfy constraints that were problematic in Phase I.
Specifically, the algorithm repeatedly evaluates the program trace on input
values, determines how close the branch conditions in the trace are to being
satisfied, and modifies some of the inputs to move closer to a full solution.
Symcretic execution does not prescribe which heuristic search algorithm to use;
possible choices include genetic algorithms and the concolic walk algorithm
(chapter 5).

We illustrate our approach on the program in Figure 3.2. Assume we select
line 5 as target. Using SBE, we obtain the path condition

Math.sin(u) > 0 ∧ res = 8192 ∧ res = x+ 23.
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Unfortunately, our symbolic decision procedure cannot solve the path condi-
tion because it cannot reason about the native method Math.sin. Symcretic
execution therefore skips the problematic constraint Math.sin(u) > 0, which
results in the satisfiable path condition res = 8192∧res = x+23 with solution
x = 8169. Simultaneously, symcretic execution creates a trace of the program:

1 void trace1(int x, double u) { // Phase II instructions:

2 int res = x + 23;

3 fit(res, "==", 8192); // Find inputs with res == 8192

4 double v = Math.sin(u);

5 change(v); // Adjust inputs that influence v

6 fit(v, ">", 0); // Find inputs with v > 0

7 }

The call to the change() method in the trace signals that the value of v

must be found by heuristic search. Phase II thus begins by executing the
trace on the inputs x = 8169 and u = 0.0—solutions obtained during Phase I.
By evaluating the calls to the fit() method, Phase II determines that the
constraint v > 0 is not yet satisfied. It therefore adjusts one of the inputs
that influence v (here: u) and re-executes the trace. This process continues
until a solution has been found or the time budget has been exceeded.

Data-Dependent Loops

Another challenge for symbolic execution are data-dependent loops that
require many iterations, such as the loop on line 4 of Figure 3.1. Triggering the
error on line 15 requires x = 1024 iterations of the loop, a number far beyond
typical loop-unrolling bounds. For example, the state-of-the-art concolic
testing tool Pex [103] fails to find the right number of iterations even with
extended exploration limits. To discover this input, symcretic execution starts
from line 15, collects the required constraints Math.sin(u) > 0 ∧ res = 8192,
and starts unrolling the loop. After a number of traversals, it exceeds the
maximum number of iterations and gives up on the loop. It therefore treats
the loop as though it were a call to an external loop method whose body
is the loop body, whose parameters are the variables read inside the loop,
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and whose return values are the values written inside the loop. In this way,
Phase I jumps over the loop and continues on line 3. After taking the last
two symbolic steps, the trace for the execution path looks as follows:

1 void trace2(int x, double u) {

2 int res = 0;

3 int i = 0;

4 res, i = extractedLoop(res, i, x); // Wraps lines 4−12 in Fig. 3.1

5 change(res);

6 change(i);

7 fit(res, "==", 8192);

8 double v = Math.sin(u);

9 change(v);

10 fit(v, ">", 0);

11 }

The body of the extractedLoop method consists of lines 4 to 12 in Figure 3.1.
The second phase of symcretic execution uses heuristic search to find inputs
that (1) influence res, i, and v; and (2) satisfy the goal conditions res = 8192

and v > 0.
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Chapter 4

Symcretic Execution

This chapter formalizes and evaluates the symcretic execution algorithm,
which, given a program and a target statement, finds inputs that drive the
program towards executing the target statement.

4.1 Terms and Definitions

To keep the exposition simple, we define symcretic execution for a small
imperative programming language with basic arithmetic and method1 calls;
see Figure 4.1. Calls can refer to methods defined in the program, or to
external library methods whose body remains hidden. Methods can return
multiple values at once, which we will use to encapsulate loops.

We assume that the program that is subject to symcretic execution passes
the customary semantic checks: type-checking succeeds, used variables have
been declared and assigned, and method calls have the right number of
arguments and return values. The program call-graph G that the execution
follows uses the public methods as entry points.
Every method m defined in the program has an associated control-flow

graph cfg(m). The basic blocks of this control-flow graph contain at most
one statement each; variable declarations and block statements do not appear.
Basic blocks without a statement are empty. To shorten the notation, we
identify non-empty basic blocks with the statement they contain. For a basic
block b in cfg(m), we write cfgPred(b) for b’s set of predecessors in the
graph.

1We use the term method to distinguish functions defined in the program from functions
that are part of our algorithm.
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〈Ids〉 ::= 〈Id〉 (, 〈Id〉)?

〈Arith〉 ::= 〈Id〉 | 〈Lit〉 | 〈Id〉 ◦ 〈Id〉
〈Call〉 ::= 〈Mthd〉() | 〈Mthd〉( 〈Ids〉 )
〈Cmp〉 ::= 〈Id〉 ∼ 〈Id〉 | 〈Id〉 ∼ 〈Lit〉
〈Decls〉 ::= 〈Type〉 〈Id〉 (, 〈Type〉 〈Id〉)?

〈Stmt〉 ::= 〈Decls〉 ;
| 〈Id〉 = 〈Arith〉 ;
| 〈Ids〉 = 〈Call〉 ;
| if ( 〈Cmp〉 ) 〈Stmt〉 else 〈Stmt〉
| while ( 〈Cmp〉 ) 〈Stmt〉
| { 〈Stmt〉? }
| return 〈Ids〉 ;

〈Def〉 ::= 〈Type〉
(
, 〈Type〉

)? 〈Mthd〉 ( 〈Decls〉 ){ 〈Stmt〉}
〈Entr〉 ::= public 〈Def〉
〈Prog〉 ::= 〈Entr〉+ | 〈Def〉?

Figure 4.1: Syntax of the example language, with a set of primitive types Type,
variable identifiers Id, literals Lit, method symbols Mthd, binary operations
◦ ∈ {+ ,−, ∗,/,%,<< ,>>}, and relations ∼ ∈ {< ,<= ,>=,>,==, !=}.

4.2 Phase I: Symbolic Phase

The depth-first search for a feasible execution path, formalized as Algo-
rithm 4.1, drives the symbolic backward execution, which is the first phase
of symcretic execution. Starting from the target statement, the algorithm
explores the program backwards, trying to find a feasible path to the first
statement of any of the program entry points. At the same time, it generates
the program trace used by the second symcretic execution phase, heuristic
solving.

The search proceeds by generating a set of next step alternatives (line 2) and
recursively visiting them in turn (line 15). Step alternatives are encapsulated
as choice structures to allow a more uniform treatment. In the simplest case,
a choice represents a predecessor of the current statement in the control-flow
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Algorithm 4.1: Depth-first exploration of the program. The algorithm drives
the symbolic backward execution phase of symcretic execution. In the algo-
rithm, P denotes the current path condition.
1: procedure symbolicPhase(stmt)
2: for c ∈ choices(stmt) do
3: updateState(c) . update path condition P

4: if P is unsat then
5: restoreState(c)
6: continue . try next choice or backtrack
7: else if P is unknown then
8: restorePcAndMarkUses(c)
9: end if
10: if nextStmt(c) = ⊥ then . at entry
11: if enterConcretePhase() is sat then
12: exit . found path and inputs
13: end if
14: else
15: symbolicPhase(nextStmt(c)) . next step
16: end if
17: restoreState(c) . undo updates
18: end for
19: end procedure

graph. Other kinds of choices represent method calls and returns; see the
detailed discussion below.
Given a choice structure c, the updateState function called in line 3

adds a corresponding constraint to the path condition P , and furthermore
updates the other parts of the search state as explained later. For example, if
c represents stepping to the assignment i = i + 1, then updateState adds a
constraint i0 = i1 + 1 to P , where i0 and i1 are the symbols that represent i’s
state after and before the assignment.
Next, the algorithm asks a decision procedure whether the updated path

condition is satisfiable. If it is, the search continues at the next statement
(line 15)—unless the search has reached the beginning of an entry point
method, in which case the second phase of symcretic execution begins (line 10).
If the path condition became unsatisfiable, the search path is a dead end. A
call to the restoreState function therefore reverts all choice-specific state
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updates, for example removing added constraints from the path condition,
before the next choice is explored. The procedure returns if no such choice
exists, meaning that the search backtracks.
In case the decision procedure cannot determine the satisfiability of the

updated path condition (line 7), the algorithm assumes that the path is
potentially feasible. The algorithm therefore records in the trace that the
constraint ϕ added by the current choice requires heuristic solving. At the
same time, it removes ϕ from the path condition to restore the decidability
of P . Restoring P is necessary to detect other constraints along the path that
require heuristic solving.

Search State

Symcretic execution organizes the symbolic backward execution using a global
search state. The first component of this search state is the path condition P

discussed above. The second component is the program trace Trc, which
the second symcretic execution phase uses for heuristic solving. The third
component is the call stack Stck that is necessary to support method calls
and returns.

A frame on the stack stores the name of the method to which it belongs, as
well as the call site. It furthermore contains the local variable environment e,
which maps the syntactic variable identifiers in the code, for example x, to
their symbolic values at the current execution point, for example x0. We use
record notation 〈x : x0〉 for the mutable environment e with e[x] = x0. Unlike
traditional records, looking up an undefined entry creates and returns a fresh
value: e[y] = y0 with y0 a fresh symbol if y /∈ e. After the look-up, we have
y ∈ e and e[y] = y0. Point-wise updates are denoted as e[x 7→ x1], deleting
entries as e[x 7→ ⊥].

State Updates

Algorithm 4.2 defines the updateState function used in Algorithm 4.1 that
modifies the search state according to a choice structure. The function recog-
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Algorithm 4.2: Application of the effects of a choice structure c to the search
state, which consists of the path condition P , the program trace Trc, and the
call stack Stck .
1: procedure updateState(c)
2: e ← env

(
top(Stck)

)
. local variable environment

3: if c is callChoice(stmt , cs) then . call with call site cs
4: if cs = ⊥ then return . entry point
5: m ← method(stmt)
6: n ← paramCount(m)
7: e ← e[arg(cs , i) 7→ e[param(m, i)] | 1 ≤ i ≤ n] . bind args.
8: pop(Stck)
9: else if c is retChoice(stmt , p, r) then . return
10: assert p is “x1,...,xn = f(...)”
11: if r is “return y1,...,yn” then
12: e ′ ← 〈yi : e[xi] | i = 1, . . . , n〉
13: push(Stck , stackFrame(e ′, f, p)) . create callee env.
14: else . external method
15: add change(e[x1], ..., e[xn]) to front of Trc
16: add makeStmt(e[x1], ..., e[xn]= f(...)) to front ofTrc
17: end if
18: else if c is predChoice(stmt , p) then . intra-procedural step
19: if p is “ if (x∼y)” or “while (x∼y)” then
20: if (stmt , p) is true branch in the CFG then
21: ϕ ← e[x] ∼ e[y]
22: else
23: ϕ ← e[x] 6∼ e[y]
24: end if
25: add fit(ϕ) to front of Trc . store taken branch
26: else
27: if p is “x = y” then
28: ϕ ← e[x] = e[y]
29: else if p is “x = `” then
30: ϕ ← e[x] = `
31: else if p is “x = y ◦ z” then
32: ϕ ← e[x] = e[y] ◦ e[z]
33: end if
34: e ← e[x 7→ ⊥]
35: add makeStmt(ϕ) to front of Trc
36: end if
37: P ← P ∧ ϕ
38: end if
39: end procedure
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nizes three kinds of choice structures: call, return, and predecessor choices,
which are constructed by the callChoice, retChoice, and predChoice

functions. All of these contain the current and next statement.
For all call and return choices (lines 3 and 9), the function binds the method

argument and return values in the respective environment before updating
the stack. Note that because of backward execution, calls and returns have
reversed effects: Call choices signal that the execution reached the beginning
of the current method; it therefore continues at the call site, popping the
stack after binding the arguments at the call site to the method parameters.
Return choices push a new frame on the stack to derive the return values
by exploring the method starting from the return statement. Exploring the
method’s body adds the relevant statements to the program trace, effectively
inlining it. Thus, only return choices for external methods, whose body is
hidden, add an entry to the trace (lines 15 and 16). The special change

method marks the arguments of the external method for modification during
the concrete phase.

For predecessor choices (line 18), the function updates the path condition
(line 37), and the variable environment e. The constraint ϕ that it adds
to the path condition is a direct translation of the choice’s next statement.
For example, the assignment x = y yields the constraint x0 = y0 if e maps
x and y to the symbols x0 and y0 (line 28). For assignments, the function
additionally removes the assigned variable identifier from the environment:
going backwards, an assignment means that the value used below has not yet
been determined (line 34).

Predecessor choices furthermore add an entry to the trace. For conditionals,
the added entry is a call to a special fit method that records the traversed
branch (line 25). The concrete phase uses the fit method to check whether a set
of concrete inputs drives the program down the intended path. For assignment
statements, the function cannot add the assignment directly because this,
in combination with method inlining, could cause clashes between variable
identifiers. Therefore, the function instead adds the constraint ϕ, which
uses unique symbols, translated to a statement (line 35). For example,
makeStmt(x0 = y0) = “x0 = y0;”.
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Choice Generation

Algorithm 4.3 returns the next search steps available at a statement stmt .
The algorithm distinguishes whether the statement is the first in the current
method. If it is, then the search continues at the method’s caller, which is
signaled by a call choice structure (lines 2–12). Otherwise, the search traverses
the method body or jumps to a callee, which is signaled by predecessor and
return choice structures (lines 13–29).

Three cases can arise if stmt is the first statement in the methodm: (1) The
current method m was called by another method during the search (line 3).
In this case, the search continues at the caller. (2) No other method called m

and m is an entry point (line 7). In this case, the search found a potentially
feasible path and the concrete phase of symcretic execution begins. Recall
that using ⊥ as next statement tells Algorithm 4.1 that a feasible path was
found. (3) No other method called m, but m is not an entry point. In this
case, the search continues at any of m’s call sites.
When stmt is not the first statement in m, the available next search

steps are the predecessors of stmt in the control-flow graph of m (line 26).
However, if stmt is a method call, the search must first traverse the callee
before continuing at the predecessor (the call site). The algorithm therefore
generates return choice structures in this case (line 24). The auxiliary function
retStmt finds the (unique) return statement in a method; it yields ⊥ if the
method is external, allowing the updateState function to distinguish these
cases.

Loops

To avoid getting stuck during the exploration of loops, the algorithm ignores
predecessors that are connected via edges that have been traversed too often
(line 21). This can result in returning an empty choice set C , which causes
Algorithm 4.1 to backtrack.

Pure symbolic execution has to give up when it cannot find a path through
a loop within the set bound L. Symcretic execution mitigates this problem
by wrapping such loops in loop methods and delegating the solving to the

23



Algorithm 4.3: Generation of the set of next search steps.
1: procedure choices(stmt)
2: if cfgPred(stmt) = ∅ then . at method entry
3: if len(Stck) > 1 then . known caller
4: cs ← callsite

(
top(Stck)

)
. jump to caller

5: return {callChoice(stmt , cs)} . single choice
6: end if
7: if m ∈ Entr then . reached entry point
8: return {callChoice(stmt ,⊥)}
9: end if
10: C ←

{
callChoice(stmt , cs) | cs ∈ callsites(m)

}
11: return C . all possible callers
12: end if
13: if stmt is loop exit and loop is new then
14: h ← loopHeader(stmt)
15: l ← loopMethod(stmt)
16: C ← {retChoice(stmt , h, l)}
17: else
18: C ← ∅
19: end if
20: for p ∈ cfgPred(stmt) do . traverse body
21: if τ [stmt , p] ≥ L then continue . edge traversed too often
22: τ [stmt, p] ← τ [stmt, p] + 1
23: if stmt is “x1,...,xn = m(y1,...,yn)” then . method call
24: C ← C ∪ {retChoice(stmt , p,retStmt(m))}
25: else
26: C ← C ∪ {predChoice(stmt , p)}
27: end if
28: end for
29: return C
30: end procedure
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concrete phase (line 16). The body of the loop method contains all statements
in the loop body, that is, all statements that are both (1) predecessors of the
loop header; and (2) dominated by the loop header. The parameters of the
loop method are the variables that are read in the body; the return values are
the variables that are assigned in the body. For every loop, the loop method
choice is added only once, when its (unique) exit is first encountered (line 13).
This avoids heuristically solving loops after partially unrolling them.

4.3 Phase II: Concrete Phase

The second phase of symcretic execution uses the program trace from the first
phase to find inputs that satisfy the symbolically undecidable constraints. To
find such inputs, the second phase relies on heuristic search, which repeatedly
evaluates the program trace on input values, determines how close the branch
conditions in the trace are to being satisfied, and modifies some of the inputs
to move closer to a full solution. This continues until a solution is found, or
until the search exceeds its budget. If the search fails, the algorithm returns
to the symbolic phase to generate a new trace. Symcretic execution does
not demand a specific heuristic search algorithm; example choices are genetic
algorithms and the concolic walk algorithm introduced in chapter 5. In the
remainder of this section, we show how a heuristic search algorithm can
leverage the information recorded in the trace.
The trace is constructed by Algorithm 4.2 and the calls to the function

restorePcAndMarkUses appearing in Algorithm 4.1. Evidently, the
trace is a straight-line sequence of assignment statements, interspersed with
calls to external and loop methods, as well as calls to the special methods fit

and change:

Trc ::= 〈Id〉 = 〈Arith〉 | 〈Id〉 = 〈Call〉 | fit(〈Id〉 ∼ 〈Id〉) | change(〈Id〉).

The calls to the fit method record the conditions of traversed branches,
compare Algorithm 4.2. Interpreting the method as fitness function allows the
concrete phase to measure how close each condition is to satisfaction, and to
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deps(x = y) = {y} ∪ deps(y)
deps(x = y ◦ z) = {y, z} ∪ deps(y) ∪ deps(z)

deps
(
..., x, ... = m(z1, ..., zn)

)
= {zi | 1 ≤ i ≤ n}

∪
⋃

1≤i≤n

deps(zi)

deps(stmt) = ∅ otherwise.

Figure 4.2: Dependency data flow equations.

modify the inputs accordingly. However, only some of the branch conditions
in the trace may require heuristic solving. Therefore, only inputs that affect
such conditions should be modified; the other inputs should remain constant,
set to the values determined by symbolically solving the path condition. To
distinguish these cases, the restorePcAndMarkUses function therefore
marks the variables appearing in constraints that made the path condition
undecidable with a call to the change method. Besides marking the variables
in the trace, the method has no effect.
In preparation for heuristic search, the concrete phase thus determines

which inputs of the trace should be modified to satisfy the branch conditions.
As discussed, only inputs that influence a fit call have to be modified, and
only inputs that influence a change call should be modified. Both sets of
input variables can be determined with the help of the deps function, which
assigns each statement in the trace the set of variables upon which it depends.
Figure 4.2 shows the data-flow equations that define the deps function.

Recall that every variable in the trace is assigned at most once because the
makeStmt function ensures unique variable names. Each variable x that is
not an input parameter therefore possesses a unique statement stmt ∈ Trc in
which x appears on the left-hand-side of the equals sign. Let def(x) denote
this statement, and let I denote the set of trace inputs. Using the fit and
change methods to find variables of interest, we determine the set R of inputs
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that require heuristic solving as

R = I ∩
⋃
x∈R0

deps(x)

with R0 = {x | change(x) ∈ Trc}. Likewise, the set B of inputs that influence
branches along the path is

B = I ∩
⋃
x∈B0

deps(x)

with B0 = {x, y | fit(x ∼ y) ∈ Trc}. Combining these, the set of input
parameters that the heuristic search should modify is B∩R. Input parameters
in I \ B can be ignored because they do not influence branches. Input
parameters in I \ R were not part of any approximation during the symbolic
phase. The values determined by the symbolic solver therefore satisfy the
dependent branches. However, they may be changed to satisfy branches more
easily. Their deterministic solutions can serve to seed the heuristic search.
In summary, the program trace models a potentially feasible execution

path in the program. Using the fit method, a heuristic search algorithm can
determine how close a set of inputs is to satisfying the conditions of traversed
branches. The search algorithm should modify the input parameters in the
set B ∩ R to move towards a solution.

4.4 Discussion

This section compares symcretic execution to related techniques, using exam-
ples to illustrate differences and similarities.

Comparison with Symbolic Execution

Like concolic execution, symcretic execution is strictly more powerful than
symbolic execution. Consider the two methods shown in Figure 4.3, which
are variations of common [50, 86] examples that demonstrate how concolic
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1 void dart(int x, int y) {
2 int a = x ∗ x ∗ x;
3 int b = y + 3;
4 if (a == b) {
5 error();
6 }
7 }
8 void external(float u) {
9 int v = Float.floatToRawIntBits(u); // native method

10 if (v == 0) {
11 error();
12 }
13 }

Figure 4.3: Two methods that are problematic for symbolic execution, but
easy for concolic execution. Method dart contains non-linear integer arithmetic,
which is undecidable in general. Method external contains a call to an external
method about which the symbolic solver cannot reason.

execution [50, 91] overcomes limitations of pure symbolic execution. Assuming
for a moment that the decision procedure only handles linear constraints, pure
symbolic execution tools [87, 16] fail to find inputs that trigger the error in
either method. In contrast, concolic execution tools [50, 91, 103], can simplify
the cubic term in line 2 of method dart by replacing x with its concrete value,
say, 2 in the path condition. The resulting constraint 8 = y + 3 is linear;
solving it yields the desired input value y=5 for x=2. Likewise, issuing the
native method call with the default input u=0.0f shows that this is the desired
solution.

While the first phase of symcretic execution is symbolic and therefore faces
the same problems as symbolic execution, the second phase provides a fall-
back mechanism that allows it to solve some of the problematic constraints.
In method dart, for example, the symbolic phase struggles with the cubic
term as it explores the program from the error statement in line 5 towards
the method’s beginning. It therefore omits the constraint from the path
condition and finds a potentially feasible execution path. The trace along
this path consists of the statements in lines 2–3, a call marking the target
fit(a, "==", b), and a call marking the variable a as requiring randomization:
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1 void unreachable(int x1, int x2, int x3 ..., int xn) {
2 int y = 0;
3 if (x1 > 0) { y = y + 1; } else { y = y + 2; }
4 ...
5 if (xn > 0) { y = y + 1; } else { y = y + 2; }
6
7 if (y > 0) {
8 if (y == 0) { // Error condition for, e.g., division−by−zero
9 error();

10 }
11 }
12 }

Figure 4.4: Program with an unreachable error condition in line 9. While
symcretic execution recognizes the unreachability after two steps, concolic
execution explores 2n execution paths before giving up.

1 void trace(x, y) {

2 a = x ∗ x ∗ x;
3 change(a);

4 b = y + 3;

5 fit(a, "==", b);

6 }

Evaluating the trace, the second symcretic execution phase uses heuristic
search to find inputs that satisfy all branch targets. For the external method,
the trace consists of just the external method call; as with concolic execution,
trying the default value u=0.0f reveals it as solution. For both examples,
symcretic execution therefore finds matching inputs.

Comparison with Concolic Execution

Unlike concolic execution, symcretic execution can avoid exploring irrelevant
paths, for example if the target is unreachable as in the unreachable method
shown in Figure 4.4. The method contains an error condition that is prevented
by a guarding if-statement. Trying to find inputs that trigger the error,
symcretic execution starts its symbolic phase at the error statement in line 9
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and starts stepping backwards. It first adds the constraint y = 0 to the
path condition, and next y > 0, which yields the unsatisfiable path condition
y = 0 ∧ y > 0. This two-step search path is branch-free; the search thus
explored (the first segments of) the only backwards path towards the method
entry. As a consequence, symcretic execution ends after these two steps with
a proof that the error in line 9 cannot occur.
Concolic execution starts its exploration of the unreachable method at the

top. Once the execution has passed the initial computation, which can be long
and contain many branches, it arrives at the if-statement in line 7. Assuming
that y > 0 holds, the execution cannot explore the (unreachable) branch in
the next line, leading to a path condition P ∧y > 0∧y 6= 0, where P describes
the path above the if-statement. If the concolic execution follows the common
exploration strategy [91], it tries to derive the next set of inputs by inverting
the last constraint in the path condition and solving it. However, the new
path condition is unsatisfiable—it contains both y > 0 and y = 0—leading
to backtracking. As concolic execution cannot recognize the unreachability
of the target statement, this repeats for every constraint in P . Concolic
execution therefore explores up to 2|P | irrelevant paths in the method before
giving up.
In some cases, guiding concolic execution [35] via data dependencies can

reduce the number of paths that are explored before the search gives up.
However, even with this reduction, the number of explored irrelevant paths
can still be large. In our (admittedly contrived) example, the branch condition
in line 8 that prevents covering the target statement depends on every block
of the preceding if-statements. The guidance therefore achieves no reduction
at all.

Comparison with Backward Slicing

A (backward) slice of a program with respect to a slicing criterion consists
of all the statements in the program upon which the criterion depends [104].
Slices are therefore similar to the traces that symcretic execution collects
along the followed execution path. Similar to a dynamic slice, the trace follows
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1 void slicing(int x1, int x2, int x3 ..., int xn) {
2 // None of the blocks uses or defines y
3 if (x1 > 0) { ... } else { ... }
4 ...
5 if (xn > 0) { ... } else { ... }
6
7 int y = 0;
8 if (y == 1) {
9 error();

10 }
11 }

Figure 4.5: Program for which slicing improves symcretic execution.

a single execution path. Unlike slicing, the trace is not fixed by the program
inputs, but by the path condition—which represents the class of all program
inputs for this path at once. A further, more important difference is that
the slice is a partial program, whereas the trace is a straight-line sequence of
statements in which all control-flow has been unrolled.

Symcretic execution currently does not slice the program. However, slicing
can accelerate symcretic execution by reducing the number of paths that
have to be explored. For example, when targeting the error statement in
line 9 of the slicing method in Figure 4.5, slicing removes the n irrelevant
conditionals in the lines 2–5. Having much of the necessary information for
slicing available during symcretic execution, we plan to integrate it in future
work.

Comparison with Search-Based Software Testing

Search-based software testing (SBST) [78] finds test inputs that meet a
coverage criterion by iteratively selecting inputs that, according to a fitness
function, seem closer to a solution. In contrast to our focus on primitive
values, inputs can vary in granularity, ranging from primitive values to method
sequences for constructing objects. Common heuristics for finding better
inputs are genetic algorithms, as well as the Alternating Variable Method [68].
The concrete phase of symcretic execution can be regarded as a special
instance of applying SBST to the program trace.
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1 void narrow(int x) {
2 int y;
3 if (x >= 0) { y = x; } else { y = −x; } // y = Math.abs(x);
4 if (y < 0) {
5 error(); // Reachable for x = Integer.MIN_VALUE
6 }
7 }

Figure 4.6: Program that is problematic for search-based software testing,
but not for symcretic execution. The narrow branch condition in line 4 relies
on an artifact of machine arithmetic. The solution is hard to discover for
heuristic search, but not for symbolic bit-vector solvers.

Heuristic search can be slow in discovering the specific solutions of narrow
branch conditions. For example, the method narrow in Figure 4.6 fails if
called with the minimal value for integers because, in two’s complement, the
additive inverse of the smallest integer does not fit into the available bits.
Therefore, it is x = −x, but x 6= 0. This exceptional behavior for one out of
232 integers (assuming 32-bit) is problematic for heuristic search because the
fitness function will typically optimize the condition x = −x for the solution
x=0. However, symbolic solvers that support bit-vector arithmetic know about
these special cases and can solve the conditions directly. Assuming such a
solver, the symbolic phase therefore gives symcretic execution an advantage
over SBST.

4.5 Implementation

We have implemented symcretic execution of a subset of Java in a tool
called Cilocnoc (concolic backwards). Given the class files of a program and
a call site of a special CILOCNOC_TARGET() marker function, the tool tries
to find inputs for any of the program’s public methods that trigger the call.
Cilocnoc fully supports arithmetic on primitives and method calls. It

furthermore implements limited support for objects. However, input objects
are described as simple textual object graphs; the tool does does not solve
the object-creation problem [114]. Another limitation is lack of support for
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arrays and static fields. Section 6.1 discusses the challenges of supporting
objects in symcretic execution.
Cilocnoc relies on WALA [36] to read class files, build the program call

graph, and construct control-flow graphs. The symbolic backward execution
engine of Cilocnoc uses Z3 [25] to solve primitive constraints, and a custom
solver for object-shape constraints. The heuristic phase finds inputs with the
concolic walk algorithm, see chapter 5.

4.6 Evaluation

In this section, we empirically compare our implementation of symcretic execu-
tion (Cilocnoc) against two other input generators: Symbolic PathFinder2 [87]
and jCUTE3 [89]. To measure the effectiveness and efficiency in generating
target-specific inputs, we define target statements for a set of small programs
(Table 4.1) and count how many search steps each tool takes before either
finding inputs that reach the target or giving up (Table 4.2).

Experiment Setup

Table 4.1 lists the programs used in our evaluation. Each program represents
a specific challenge for symbolic and concolic execution (see section 4.4).
The dart , easy-loop, trityp, sine, tcas , and tsafe programs are examples that
appear in related work: dart is close to the standard example for concolic
execution [50, 86] (see Figure 4.3); easy-loop is a simple data-dependent loop
that was used to evaluate JAUT [21]; and trityp is the classic highly-branching
program for classifying triangles. The sine, tcas, and tsafe programs are
part of the Symbolic PathFinder distribution and represent programs with
trigonometric or bit-vector computations. The remaining programs consist of
the methods shown in the Figures 3.1, 4.4, 4.5, and 4.6. In each program, we
place target statements inside of branches that we wish to cover.

2http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
3http://os.cs.illinois.edu/software/jcute
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Table 4.1: Programs used to evaluate symcretic execution. The LoC column
lists the number of source code lines in the program, excluding comments and
empty lines. The Ifs and Loops columns show the number of if-statements
and and loops in the program, the Targets column contains the number of
targets.

Program Description LoC Ifs Loops Targets

dart Figure 4.3 10 2 · 1
easy-loop Decrementing loop 15 1 1 1
hard-loop Figure 3.1 21 2 1 1
narrow Figure 4.6 14 2 · 1
sine Sine implementation 169 19 · 2
slicing Figure 4.5 18 10 · 1
tcas Aircraft collision avoidance 126 6 · 3
trityp Triangle classification 49 10 · 3
tsafe Loss of separation detection 82 11 · 5
unreach Figure 4.4 20 11 · 1

We generate inputs for every program using the Cilocnoc, jCUTE, and SPF-
CW tools. jCUTE is a classic concolic test generator that relies on a linear
constraint solver. SPF-CW is a variant of Symbolic PathFinder that solves
complex arithmetic path conditions—including calls to external methods—
with the same concolic walk algorithm that Cilocnoc employs in its concrete
phase (see chapter 5). jCUTE and SPF-CW both generate high-coverage
test suites for Java programs. Aiming for high overall coverage, neither tool
implements a guiding heuristic towards a target statement. However, as
discussed in section 4.4, the data-dependency guidance proposed in prior
work [35] would have little impact on the programs in our corpus. All tools
explore the program depth-first without depth bound but with a 1 minute
time limit.

During the input generation, we count the execution path segments the tool
traverses before reaching the target. A segment is a straight-line sequence of
statements between two branching points in the execution path. We choose
this metric because it depends less on implementation choices than measuring
execution time. Nevertheless, we also report the run times (in seconds) to give
some intuition of the usefulness of the tools to programmers (Table 4.3). The
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times exclude the duration of static setup tasks because the values generated
by these tasks could (and should) be cached. For jCUTE, the static setup
consists of instrumenting the target program’s byte code; this adds about
1 second to the processing time of each program. For Cilocnoc, the static
setup consists of loading and indexing the JDK class hierarchy, which also
takes about 1 seconds per program on an Intel Core i7 notebook with 2GB
of RAM.

All three tools use random values to solve path conditions. Whether a tool
can cover a target or not is therefore subject to randomness. In addition,
Cilocnoc’s program exploration order, and therefore the number of explored
path segments, depends on the arbitrary order in which it arranges the target
program’s basic blocks in memory. To counter these effects, we repeat all
measurements seven times and verify the statistical significance of observed
differences in the segment count and tool run time distributions through
non-parametric Mann–Whitney U-tests.4 To account for varying difficulty, we
perform one test per program between the seven measurements (averaged over
the program’s targets) of the two compared tools. The tests are two-tailed
and the significance level is α = 0.01.

Results: Is Symcretic Execution Effective?

The data in Table 4.2 shows that Cilocnoc finds inputs for more reachable
targets than the other tools, which suggests that symcretic execution is
effective in finding target-specific inputs.
Both Cilocnoc and SPF-CW cover a similar number of targets, whereas

jCUTE covers about half that number. The difference can be explained by
jCUTE’s eager simplification of path conditions: jCUTE replaces problematic
constraints in the path condition with concrete values when they leave the
theory of the underlying solver. In contrast, both Cilocnoc and SPF-CW
defer using concrete values until they query the path condition’s satisfiability.
They can therefore incorporate side-conditions that were collected after the

4scipy.stats.mannwhitneyu() in SciPy v0.13.3
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Table 4.3: Adjusted run time for each tool per program. All values are in
seconds. Adjusted means that 1 second was subtracted from the jCUTE and
Cilocnoc times to account for pre-processing time that could be eliminated
by caching. The mean and standard deviations are computed over seven runs.
A hyphen (–) denotes a timeout after 1 minute.

jCUTE SPF-CW Cilocnoc

Program Mean Std. dev. Mean Std. dev. Mean Std. dev.

dart 1.34 0.09 0.91 0.23 0.87 0.08
easy-loop – – – – 0.89 0.10
hard-loop – – – – 2.38 0.27
narrow 1.82 0.92 0.76 0.06 0.90 0.13
sine 2.66 0.14 1.45 0.04 3.59 0.53
tcas 44.99 0.38 – – 2.08 0.17
trityp 3.20 0.26 – – 0.93 0.05
tsafe 44.99 0.38 3.53 0.15 2.08 0.17

slicing – – 1.73 0.06 1.45 0.07
unreach – – 1.80 0.06 0.97 0.06

problematic constraint was initially encountered (see the detailed discussion
of this effect in chapter 5).

Benefiting from a strong symbolic solver, Cilocnoc uses concrete execution
for just four programs: the easy-loop, the hard-loop, the sine, and the tsafe
program. For both loop programs, the concrete execution accelerates the
exploration of the program’s data dependent loop and help it cover the targets
within the 1 minute time limit. On the sine and tsafe programs, Cilocnoc
and SPF-CW employ concrete execution and the concolic walk algorithm to
solve an external method call, as well as trigonometric constraints. Notably,
the concolic walk algorithm of Cilocnoc fails to solve the respective constraint
in the sine program whereas the same algorithm succeeds for SPF-CW.
The narrow program can be covered by Cilocnoc because its symbolic solver
knows about bit-vector arithmetic and the irregularity of negating the smallest
integer. In contrast, SPF-CW uses a weaker symbolic solver and therefore
cannot cover the target.
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Results: How Efficient is Symcretic Execution?

The results in Table 4.2 support our hypothesis that symcretic execution is
more efficient than concolic and symbolic execution.

For both loop programs, Cilocnoc side-steps the costly symbolic exploration
of the loop. As a consequence, it explores 13 instead of 5 018 183 (jCUTE)
and 1 318 (SPF-CW) path segments in the easy-loop program, and 25 instead
of 968 308 (jCUTE) and 19 748 (SPF-CW) segments in the hard-loop program.
On the unreach program, Cilocnoc benefits from exploring the program
backwards and being able to recognize unreachable branches as discussed
in section 4.4: instead of exceeding the 1 minute time limit, exploring 2 862
(jCUTE) or 1 533 segments (SPF-CW), it explores a single segment.

The results also show that pure symbolic execution has an exploration ad-
vantage over concolic execution. Unlike jCUTE, both SPF-CW and Cilocnoc
(in the symbolic phase) support backtracking the search state. When a search
path becomes infeasible before having reached the target, they can revert
the changes of the last branch before descending into another branch of the
search tree. In contrast, jCUTE has to re-execute the entire program starting
from the beginning. Both SPF-CW and Cilocnoc can therefore explore paths
much faster than jCUTE. For example, on the slicing program, jCUTE is an
order of magnitude slower than Cilocnoc.

4.7 Summary

Inputs that cover a specific target are useful in debugging and testing. Un-
fortunately, concolic testing and search-based software testing are inefficient
in generating such target-specific inputs because (1) the driving concrete
execution is hard to guide towards the target; and (2) they cannot detect
if a path is unreachable, which prevents them from stopping the program
exploration. Symcretic execution is an alternative target-specific input gener-
ation technique that avoids these problems. Evaluating symcretic execution
on a range of test cases shows that it finds inputs in more cases than concolic
testing tools while exploring fewer paths.
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Chapter 5

Heuristic Solving
of Complex Path Conditions?

This chapter describes the concolic walk (CW) algorithm for solving complex
arithmetic constraints and path conditions. While useful for the concrete
phase of symcretic execution, the algorithm likewise applies to symbolic and
concolic testing, where it increases the coverage. This chapter therefore
discusses the algorithm in this better-known context.
A central problem in symbolic and concolic testing is translating the

arithmetic constraints of the path condition into the theory of the underlying
solver. The difficulties in translating are:

1. Non-linear integer constraints often make it infeasible to solve the path
condition. Such constraints are even undecidable in general [24].

2. Path conditions can contain calls to (uninterpreted) library methods,
such as trigonometric functions, about which the solver cannot rea-
son [114].

The concolic walk algorithm introduced in this chapter solves path condi-
tions through a novel blend of symbolic reasoning, concrete evaluation, and
heuristic search, which overcomes the limitations of previous approaches. The
algorithm is based on a geometric interpretation of the problem: We regard
assignments of values to the variables appearing in a path condition as points
in a valuation space. Intuitively thinking of the valuation space as Rn, we
find a solution point to a path condition by combining the following ideas:

?This chapter is based on the paper Solving Complex Path Conditions through Heuristic
Search on Induced Polytopes by Peter Dinges and Gul Agha, which appeared in the
proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT/FSE’14) [31]. Permission to reprint has been granted
by ACM.
http://dx.doi.org/10.1145/2635868.2635889
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• The solutions of the linear constraints in the path condition define a
contiguous convex region in the space (a polytope).1 All solutions to
the whole path condition must lie within this polytope.

• All terms appearing in the constraints that comprise the path condition,
including library methods, can be evaluated. Hence, we can assign each
constraint an evaluation-based fitness function that measures how close
a valuation point is to satisfying the constraint. This allows us to find
solutions through heuristic search.

• Many non-linear terms are at least piece-wise continuous. Numerical
optimization techniques akin to Newton’s method can thus accelerate
the solution search.

In particular, our algorithm (1) splits the path condition into linear and
non-linear constraints; (2) finds a point in the polytope induced by the linear
constraints with an off-the-shelf solver; and then, (3) starting from this point,
uses adaptive search [23] within the polytope, guided by the constraint fitness
functions, to find a solution to the whole path condition.

5.1 Motivation

Assume we want to find an input for the example1 method in Figure 5.1 that
covers the path along the statements in the lines 3, 4, and 5. To drive the
execution down this path, x and y must satisfy the non-linear path condition
x = x · y ∧ x > 2. Given a suitable decision procedure, we can solve the path
condition to obtain, for instance, the concrete inputs x=3 and y=1.

Mitigating Solver Limitations

Unfortunately, a complete symbolic decision procedure for general non-linear
integer constraints cannot exist [24]. Furthermore, a decision procedure
can typically only find solutions if it has an interpretation for all appearing

1We ignore “not equal” constraints to convey the essential idea of our algorithm.
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1 static void example1(int x, int y) {
2 int z = x ∗ y; // non−linear operation
3 if (x == z)
4 if (x > 2)
5 error();
6 }
7
8 static void example2(double u) {
9 // work with the binary representation of u

10 long v = Double.doubleToRawLongBits(u); // native method
11 long w = v & 0xff000;
12 if (w > 0)
13 error();
14 }

Figure 5.1: Example Java methods with complex path conditions. In method
example1, the path to the error (line 5) has the non-linear path condition
x = x·y∧x > 2. Neither jCUTE [89] nor mixed concrete–symbolic solving [86]
discover input values that satisfy this path condition. In method example2,
the path condition for the error (line 13) contains a call to an uninterpreted
library method. Neither SPF-CORAL [94] nor Pex [103] (for the C# version)
discover input values that satisfy the path condition.
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Figure 5.2: Solutions of the non-linear equation x = x · y (circles) and its
linearization x = 2 · y (squares). No solution for x = 2 · y, satisfies the path
condition x = x · y ∧ x > 2, which shows the danger of blindly simplifying
path conditions.

operations. If a path condition contains arbitrary integer arithmetic or,
importantly, calls to opaque library methods—like the native cos method in
Java—, then finding a solution is hard [114].

A common approach to work around such solver limitations is to simplify
(under-approximate) the path condition: parts of the path condition that the
solver cannot handle are first executed on concrete inputs and then replaced
with the concrete results. Simplification has been applied while constructing
the path condition, and while solving it. Classic concolic test generators
such as jCUTE and Pex simplify at construction time. For example, jCUTE
relies on a linear constraint solver. When building the path condition for the
path 2, 3, 4, 5 in Figure 5.1, it replaces the non-linear expression x · y with
2 · y if x = 2 when the expression is added. This yields the path condition
x = 2 · y ∧ x > 2∧ x = 2 if we include the constraint x = 2 that is required to
make the simplification sound [49, 86]. In contrast, mixed concrete–symbolic
solving [86] simplifies at solution time. To solve a path condition, mixed
solving splits it into resolvable and complex constraints, solves the resolvable
ones directly, and uses the solution to simplify and concretely execute the
complex constraints. The execution results, in turn, serve to simplify the
complex constraints.
Figure 5.2 shows how simplification produces bad approximations. The

42



simplified path condition of above example is unsatisfiable because of a bad
approximation due to a random choice of x. Likewise, mixed solving fails to
cover the path because the only feedback from the concrete execution to the
constraint solver is ruling out non-working values, which is often insufficient
to find a solution (section 5.7). Observe that both simplification techniques
are problematic because of blind commitment to concrete values, regardless
of other constraints on the variables.

Stronger Solvers

The number of such bad approximations decreases as the strength of the solver
increases. The Pex concolic test generator [103], for example, relies on the Z3
SMT2 solver [25] to find inputs that satisfy a path condition. Z3 supports
(some) non-linear integer operations in its constraints, and hence Pex discovers
the error in line 5 of Figure 5.1. Likewise, SPF-CORAL, a combination of the
Symbolic PathFinder (SPF) symbolic execution tool [85, 87] and a constraint
solver based on heuristic search (CORAL [94, 13]), discovers the error.

While this extends the domain of programs that can be handled and enables
coverage of more paths than before, it does not fully fix the interpretation
problem. Specifically, programs may call hitherto unknown library methods.
For example, an implementation of trigonometric functions converts floating-
point numbers to bit-vectors, as exemplified in Figure 5.1. Such methods
would require a solver extension, arguably a maintenance nightmare. Other
interactions, such as database queries, are even harder to integrate.

5.2 Algorithm

This section describes the concolic walk (CW) algorithm for solving path
conditions. The algorithm addresses the aforementioned challenges of relying
on decision procedures by treating linear and non-linear constraints differently:
to solve the linear constraints, it uses an off-the-shelf solver; to solve the

2Satisfiability Modulo Theories
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non-linear constraints, it uses heuristic search based on concrete execution
(evaluation). Using concrete execution allows the algorithm to handle opaque
library methods without further extension. At the same time, the algorithm
never simplifies the path condition to avoid blind commitment to concrete
values.

Synopsis

The algorithm distinguishes between linear and non-linear constraints because
linear constraint systems are decidable and efficient solvers exist. Furthermore,
linear constraints have a useful geometric interpretation: Assume that we
relax the domain of each variable in the path condition to R. Then we can
regard an assignment of values to each variable as point in a valuation space,
which corresponds to Rn. In the valuation space, the solutions of a linear
constraint form a half-space; a conjunction of linear constraints therefore
describes an intersection of half-spaces, which is a convex (hence, contiguous)
region—a convex polytope.3 In Figure 5.2, the polytope is the region right of
the line x = 2; in Figure 5.3, it is the shaded region right of the line x = 2

and above the line x+ y = 2.
All variable assignments that are global solutions to the whole path condi-

tion must lie within the polytope because the points outside violate the linear
constraints. To find a global solution, the CW algorithm thus picks points
in the polytope and evaluates the non-linear constraints on them to check
whether these are satisfied, too.

An efficient way to pick random points in the polytope is a random walk.
However, if global solutions are sparse within the polytope, a random walk has
slim chances of discovering one. The algorithm therefore combines the random
walk with a search heuristic that guides the walk towards promising regions.
For this, each non-linear constraint is assigned a fitness function—based on
evaluating the terms in the constraint—that measures how close the current
point is to a solution of the constraint.

3Recall that each clause of an or branch condition is treated as a separate path. The
path condition is therefore a pure conjunction of constraints. Our interpretation ignores
“not equal” constraints; these cut slices out of the polytope.
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From the many meta-heuristics (simulated annealing, genetic algorithms,
etc.), we chose the adaptive search variant [23] of tabu-search [46, 47] for its
ease of adding a non-random neighbor-picking strategy (see below). In each
iteration, adaptive search picks the variable that appears in the most violated
constraints and examines neighbor points that differ only in this variable.
A variable becomes tabu for several iterations if changing its value failed to
yield a better neighbor. The search moves towards the fittest neighbor, like
hill-climbing, but escapes local minima with the help of the tabu mechanism.
In addition to picking random neighbors, the CW algorithm furthermore

tries to exploit (piece-wise) continuity of non-linear terms. Given the values
of the fitness function at the current point and a neighbor, it estimates a third
point where the constraint would be satisfied, were it linear. Such estimation
equals a single step of the bisection method for numerical zero-finding and
can accelerate the search.

Example

Consider the partial plot of the valuation space for the variables x and y in
Figure 5.3. We are interested in solving the path condition

x = x · y ∧ x ≥ 2 ∧ x+ y ≥ 2,

which consists of the linear constraints x ≥ 2 and x + y ≥ 2, and the non-
linear constraint x = x · y. The linear constraints describe an unbounded
convex polytope; the figure shows (a part of) the polytope as shaded area.
All feasible solutions of the path condition must be contained within this
polytope. To discover a solution of the non-linear constraint (circles in the
figure), we ask the off-the-shelf linear constraint solver for an arbitrary point
in the polytope and start a random walk. Suppose our starting point is
(x, y) = (4,−1). Choosing the variable x for modification, we randomly
generate the neighbors (3,−1) and (6,−1). From these, we pick (3,−1)
because it is closer to satisfying the non-linear constraint x = x · y (step 1 in
the figure). Modifying x again does not yield a better neighbor; all of these
lie outside the polytope (step 2). Thus, x is marked as tabu and the next
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Figure 5.3: Example step sequence when solving the path condition x =
x · y ∧ x ≥ 2 ∧ x + y ≥ 2 with the concolic walk algorithm. In the figure,
circles mark solutions to the non-linear constraint x = x · y. The shaded area
highlights the unbounded polytope described by the linear constraints x ≥ 2
and x+ y ≥ 2. Solutions to the path conditions are circles that are contained
in the polytope. The figure denotes the current point as a square; generated
candidates as diamonds; and estimated solutions from bisection as stars.
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〈Exp〉 ::= 〈Var〉 | 〈Lit〉 | 〈Call〉 | 〈Exp〉 ◦ 〈Exp〉 | (〈Exp〉)
〈Call〉 ::= 〈Fun〉() | 〈Fun〉( 〈Var〉 (, 〈Var〉)? )
〈Cond〉 ::= 〈Var〉 ∼ 〈Var〉
〈Stmt〉 ::= 〈Var〉 = 〈Exp〉

| if ( 〈Cond〉 ) 〈Stmt〉 else 〈Stmt〉
| while ( 〈Cond〉 ) 〈Stmt〉
| { 〈Stmt〉

(
; 〈Stmt〉

)?
}

〈Prog〉 ::= 〈Stmt〉
(
; 〈Stmt〉

)?
Figure 5.4: Syntax of the example language, with variables Var, literals Lit,
function symbols Fun, binary operations ◦ ∈ {+,−, ·, /,mod}, and relations
∼∈ {<,≤,≥, >,=, 6=}.

iteration modifies y. Aside from a random neighbor (3, 2), we estimate a zero
for the linear parameterization of x− x · y on the line (3,−1)–(3, 2), which
yields the solution (3, 1) (step 3).

5.3 Terms and Definitions

Before formalizing the CW algorithm in the next section, we briefly define
the terms used. To simplify the exposition, we describe the algorithm for a
small imperative programming language whose Java-like syntax is shown in
Figure 5.4. The algorithm itself is independent of the target language and
applies to any language for which the ceval and seval functions can be
defined accordingly.
The example language supports the basic imperative statements. It lacks

support for function definitions to keep matters simple, but expressions may
contain calls to opaque library functions that have been defined elsewhere.
The only data types are integers and real numbers because of our focus on
solving arithmetic constraints.
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Concrete Execution

An evaluation function ceval models the concrete operational small-step
semantics of the language. In practice, ceval could take the shape of
an interpreter or virtual machine. Formally, ceval returns the successor
configuration for a given program prog and a concrete environment χ : Var→
R ∪ {⊥}:

ceval(prog , χ) = (prog ′, χ′),

where prog ′ is the program derived from prog by executing one step, and
χ′ is derived from χ by applying the effects of this step. Using record
notation 〈z : c〉 for the environment χ with χ[z] = c and χ[y] = ⊥ for
y 6= z, we thus have ceval

(
y=2(x−2), 〈x : 23〉

)
=
(
⊥, 〈y : 42, x : 23〉

)
. As

shorthand for expression evaluation, we write ceval(e, χ) for χ′[z] where
(⊥, χ′) = ceval(z = e, χ) with a fresh variable z.

When a program runs, it follows an execution path, which is a sequence of
steps i ↪→ j from statement number i in the program to one of its successors j.

Symbolic Execution

Symbolic execution of the language is encapsulated by the function seval.
For an execution step i ↪→ j, seval builds a symbolic description of the step’s
effects. The description consists of two parts: a symbolic environment σ, and
a set of control-flow constraints P . In symbols,

seval(prog , i ↪→ j, σ,P) = (σ′,P ′).

The symbolic environment σ′ captures updates to the program state as
expressions. It assigns each variable x an expression e that, when evaluated
in a concrete environment χ, yields the same value that x would have after
executing the step concretely. Thus, e must be precise and cannot approx-
imate the effects through simplification. However, there are no structural
transparency requirements on e; seval may encapsulate the effects as opaque

48



function calls. Using the expression evaluation notation from above, we have

ceval(e, χ) = χ′[x] for (⊥, χ′) = ceval(prog i, χ),

where prog i is the i-th statement in prog . For example, seval
(
y=2(x−2), 0 ↪→

1, 〈x : x〉, ∅
)
=
(
〈y : 2(x − 2), x : x〉, ∅

)
so that evaluating the expression

assigned to y yields 42 as above. We assume that seval performs the variable
renaming necessary to support reassignments.
The second half of the description built by seval, the set P ′, collects the

symbolic constraints of traversed conditionals. If the execution step i ↪→ j

follows the “true” branch of an if- or while-statement with the condition x ∼ y,
then seval derives P ′ by adding the constraint σ′(x) ∼ σ′(y) to P ; if the
step follows the “false” branch, seval adds σ′(x) 6∼ σ′(y) to P ; otherwise it
copies P . A concrete execution of the program thus follows the path given to
seval only if the values in the concrete environment satisfy all constraints
in P ′. Hence, P ′ is the path condition.

Constraints

Formally, the constraints in the path condition are triples (`,∼, r) ∈ Exp×
{≤, <,>,≥,=, 6=} × Exp, written as ` ∼ r. A constraint is satisfied in
an environment χ if the relation denoted by ∼ holds between the values
ceval(`, χ) and ceval(r, χ). We say that the path condition P is satisfied
in χ if each of its constraints is satisfied in χ. In this case, we write χ |= P .

As motivated in section 5.2, we distinguish linear from non-linear constraints
to exploit their decidability and geometric interpretation. A constraint ` ∼ r

is linear if it can be transformed into a normal form

n∑
i=1

aixi ∼ b

with variables xi and constants ai, b ∈ R.
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Algorithm 5.1: The concolic walk algorithm for solving the path condition P .
Notation: P = {`i ∼i ri | i} is a set of constraints, x, y ∈ Var are variables,
and α, β, γ, ε, µ, τ : Var → R are environments whose elements are 0 by
default. Operations on environments apply point-wise. The vars function
returns the set of variables appearing in an expression, constraint, or path
condition; see Figure 5.5.
1: procedure SolveWithConcolicWalk(P)
2: L ← {c ∈ P | c is linear} . polytope
3: N ← P \ L . non-linear constraints
4: α ← SolveLinear(L) . starting point
5: if α = ⊥ then return ⊥
6: i ← 0 . iteration (step) counter
7: while α 6|= N do . α is not a solution
8: if i > I · |N | then return ⊥
9: i ← i+ 1

10: if ∀y ∈ vars(P) : τ [y] > 0 then . all vars tabu
11: α ← RandomStep(α,vars(P),L)
12: τ ← 〈y : 0 | y ∈ vars(P)〉
13: end if
14: eα ← 0 . error at α
15: ε ← 〈y : 0 | y ∈ vars(P)〉 . error per variable
16: for c ∈ N do
17: w ← ComputeError(c, α)
18: eα ← eα + w
19: ε ← ε+ 〈y : w | y ∈ vars(c)〉
20: end for
21: x ← VarWithMaxValue(ε− 〈y :∞ | τ [y] > 0〉)
22: eµ, µ ← FindBestNeighbor(α, x,L,N )
23: if eµ < eα then . found better neighbor
24: α ← µ
25: eα ← eµ
26: τ ← τ − 〈y : 1 | τ [y] > 0〉)
27: else
28: τ [x] ← T . x is tabu for T steps
29: end if
30: end while
31: return α
32: end procedure
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vars(e) =



{x} if e = x;
{a1, . . . , an} if e = f(a1, . . . , an);
vars(e1) ∪ vars(e2) if e = e1 ◦ e2;
vars(e) if e = (e);
∅ otherwise.

vars(` ∼ r) = vars(`) ∪ vars(r)

vars(P) =
⋃
i

vars(`i ∼i ri) for P = {`i ∼i ri | i}

Figure 5.5: Definition of the vars function that returns the set of variables
appearing in an expression, constraint, or path condition.

5.4 Concolic Walk Algorithm

Algorithm 5.1 formalizes the CW algorithm. The algorithm accepts a path
condition P as input and returns a concrete environment that satisfies P ,
or ⊥ if it could not find such environment.

In preparation to the random walk, the algorithm extracts the polytope de-
scription from P and generates a starting point within the polytope (lines 2–5).
The polytope description, denoted L, simply consists of all linear constraints
in P . The starting point is the solution for L returned by a linear constraint
solving function SolveLinear. In dimensions unconstrained by L, the point
has arbitrary entries. Assuming that SolveLinear is sound and complete, P
is unsatisfiable if no solution for L exists, and the algorithm hence returns ⊥.
Otherwise, the random walk starts and continues until either a solution was
found (line 7), or the iteration budget was exhausted (line 8).
In each iteration, the algorithm tries to find an environment with a lower

error score than the current environment α. To do so, it (1) finds the variable x
with the highest error score (lines 14–20); (2) generates neighbor environments
for α by modifying this variable’s value; (3) picks the neighbor µ with the
lowest error score (both line 21); (4) and makes µ the current environment if is
better than α (lines 23–26). Algorithm 5.2 shows the function for computing
the error scores; the function resembles Korel’s branch functions [68]. The
auxiliary vars function is defined in Figure 5.5.
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Algorithm 5.2: Error score for the constraint ` ∼ r in the environment χ that
captures “how badly” the constraint is violated. The procedure computes the
score by executing the symbolic expressions `, r on the concrete inputs in χ.
1: procedure ComputeError(` ∼ r, χ)
2: d ← ceval(`, χ)− ceval(r, χ)
3: if ∼ is = then
4: return |d|
5: else if ∼ is 6= then
6: if d 6= 0 then return 0 else return 1
7: else
8: if d ∼ 0 then return 0 else return |d|+ 1
9: end if
10: end procedure

11: procedure ComputeError({`i ∼i ri | i}, χ)
12: return

∑
i ComputeError(`i ∼i ri, χ)

13: end procedure

The algorithm maintains a tabu counter τ for each variable to escape local
error-score minima. If modifying a variable x failed to yield a better neighbor,
it is marked as tabu for T iterations (line 28). Variables marked as tabu cannot
be selected for modification: they are assigned an error score of −∞ before
choosing the maximal one (line 21). Consequently, the algorithm explores
other directions if one seems to lead nowhere. Every iteration a better
neighbor was found, all tabu counters are decremented (line 26). However,
some constraints, like x · y > 0, require changing multiple variables at the
same time and cause the algorithm to declare each variable tabu, one after
another. Thus, if all variables are tabu, the algorithm modifies the values of
all variables and resets the tabu counters (lines 10–13).

Neighbor Selection

Generating neighbors and picking the best one has been extracted to the
FindBestNeighbor function (Algorithm 5.3). R times, the function gen-
erates two neighbor environments β and γ for its input α, remembering the
overall best one.
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Algorithm 5.3: Choosing the best among environments that differ from α in
their x-entry and lie inside the polytope L (satisfy L).
1: procedure FindBestNeighbor(α, x,L,N )
2: eµ ← ∞ . error at µ
3: for R iterations do
4: β ← RandomStep(α, x,L) . in the polytope
5: c ← OneOf

(
{c ∈ N | α 6|= c and x ∈ vars(c)}

)
6: γ ← BisectionStep(c, α, β) . may be outside
7: eβ ← ComputeError(N , β)
8: eγ ← ComputeError(N , γ)
9: if eβ < eµ then
10: eµ ← eβ
11: µ ← β
12: end if
13: if γ |= L and eγ < eµ then
14: eµ ← eγ
15: µ ← γ
16: end if
17: end for
18: return eµ, µ
19: end procedure

The environment β is the result of taking a random step in the polytope L

along the axis of the given variable x; see Algorithm 5.4. The function
RandomStep guarantees that the returned environment lies within the
polytope.
The environment γ is the result of linear approximation: for a random

unsatisfied constraint ` ∼ r ∈ N that contains x, the BisectionStep

function estimates the environment that would satisfy the constraint if both
` and r were linear functions. This can be seen as performing one step of the
bisection method in the hope of jumping to a region where a solution is close.
Setting vα = ceval(`− r, α) and vβ = ceval(`− r, β), the slope of the linear
approximation is t = −vα/(vβ − vα), and γ is the zero of t · (β − α) + α. If
vα = vβ, a random slope is used.
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Algorithm 5.4: Taking a random step from χ in the yi-directions within the
polytope L. The algorithm uses rejection sampling with at most M sam-
ples. Parameter S affects the step radius. The function AdjustToSatisfy
restores linear equalities that were violated during randomization by re-
computing affected values from ν.
1: procedure RandomStep(χ, {yi | i},L)
2: E ← {` = r ∈ L} . linear equations
3: for M iterations do
4: ν ← χ+ 〈yi : NormalRandom(0, S) | i〉
5: ν ← AdjustToSatisfy(E , ν)
6: if ν |= L then return ν
7: end for
8: return χ
9: end procedure

5.5 Discussion

The CW algorithm uses a sound and complete off-the-shelf solver for linear
constraints. Hence, it is sound and complete for path conditions that contain
only linear constraints. For non-linear path conditions, the algorithm uses
heuristic search. The search ends with a negative result when it has exhausted
its iteration budget. Thus, it is not complete. However, it is sound because
a returned environment α must satisfy the non-linear path condition N to
escape the main loop, and all generated neighbors lie within the polytope L.
Consequently, α satisfies the original path condition P = L ∪ N .

Checking the satisfaction of constraints, computing their error scores, and
generating linear approximations (in function BisectionStep) requires the
concrete values of the involved expressions. The CW algorithm does not
mandate a specific way of obtaining these values: they could be computed by
an interpreter for the symbolic expressions, or they could be extracted from
an instrumented version of the original program. Therefore, the algorithm
can be used in both symbolic and concolic execution.
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5.6 Implementation

We have implemented the algorithm described in section 5.4 as an extension
of Symbolic PathFinder (SPF) [85, 87]. SPF is a symbolic execution engine
built on top of the JPF verification framework.4 Our extension works with
existing SPF test-drivers; the only change required is enabling the extension
by setting a configuration flag. No further annotations or code changes are
necessary. The implementation, as well as the evaluation harness are available
for download on our website.5

The extension acts as a PCAnalyzer in SPF. It intercepts path condition
satisfiability queries and answers them with the CW algorithm. Instead of re-
executing the program to obtain the concrete value of symbolic expressions in
the path condition, the extension evaluates the expressions with an interpreter.
While limiting the implementation’s performance, the design allows evaluating
the constraints in the path condition independently of each other. Using the
program, control-dependencies would enforce solving the constraints in the
order of their appearance [68].

Our implementation leverages the support for uninterpreted function sym-
bols in path conditions that was added to SPF as part of mixed concrete–
symbolic solving [86]. The function symbols wrap library functions, which
can be called concretely via reflection when solving the path condition. Since
the circumstances of the functions’ invocations depend on SPF’s backtracking,
wrapping functions with side-effects can lead to solutions that fail in a different
context such as a generated unit test.
Unlike their definitions, the implementation of the error score functions

must handle underflows and overflows of integers, as well as not-a-number
floating point anomalies. Underflows are assigned an error score of the smallest
integer value; overflows the largest integer value; and not-a-number has an
error score of 1/8 of the maximum double value.

4http://babelfish.arc.nasa.gov/trac/jpf/
5http://osl.cs.illinois.edu/software/
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5.7 Evaluation

This section evaluates how effective and efficient the concolic walk (CW)
algorithm is in solving path conditions with non-linear arithmetic constraints.
To make the results comparable and link them to a practical application of
the algorithm, we measure effectiveness as the coverage of generated test
cases on a focused program corpus. The corpus consists of programs whose
path conditions contain mostly non-linear constraints. In subsection 5.7.1,
we evaluate the performance of the CW algorithm. In subsection 5.7.2, we
investigate how the parameters of the algorithm influence the coverage.

Program Corpus

Table 5.1 lists the programs used in the evaluation together with the type of
non-linear operations appearing in their path conditions. Due to our focus on
non-linear arithmetic constraints, the programs are samples from a population
of programs that use such constraints; they do not represent common programs.
To avoid a bias towards specific strengths of our approach and to foster
comparability, we use mostly examples from works presenting other approaches
to concrete–symbolic and randomized solving of path conditions: The coral
program6 is a collection of 65 benchmark functions used to evaluate the
CORAL constraint solver [94]. The functions consist of a single if-statement
whose condition includes a mixture of complex mathematical operations like
calls to trigonometric functions. opti contains the six non-linear benchmark
functions that were part of evaluating the FloPSy floating-point constraint
solver [70]. The dart , power , sine, stat , and tsafe programs are part of the
Symbolic PathFinder distribution. stat computes the mean and standard
deviation of a list of numbers; and tsafe is an aviation safety program that
predicts and resolves the loss of separation between airplanes. blind is an
implementation of Figure 5.1, and hash tries to provoke five collision variants
in a common hash function [11]. tcas features involved, but linear, control-flow.

6http://pan.cin.ufpe.br/coral/Download.html
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Table 5.1: Programs used to evaluate the CW algorithm. The LoC column
lists the number of source code lines in the program, excluding comments
and empty lines. The Operations column describes the type of operations
appearing in the path condition.

Program Operations LoC

coral Trigonometric functions, polynomials 335
blind Multinomial 17
hash Polynomial, shift, bit-wise xor 54
opti Exponentials, square roots 48

dart Polynomials, required overflow 18
power Exponential function 31
ray Polynomials (dot product) 304
sine Float to bit-vector conversion 289
stat Mean and std. dev. computation 113
tcas Constant equality checks 157
tsafe Trigonometric functions 88

It demonstrates how the evaluated algorithm behaves on classical testing
problems. Finally, the ray application7 is a simple ray tracing renderer.

Method

We generate test cases for each program in the corpus and record the coverage
of the generated tests with JaCoCo.8 To account for randomness, we repeat
this process seven times and verify the statistical significance of observed
differences in the coverage and generation time distributions through non-
parametric Mann–Whitney U-tests.9 To account for varying difficulty, we
perform one test per program between the seven measurements of the two
compared algorithms. Unless stated otherwise, the test is two-tailed and the
significance level is α = 0.01. To prevent small programs from dominating

7http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture20/
RayTrace.java

8http://www.eclemma.org/jacoco/
9scipy.stats.mannwhitneyu() in SciPy v0.13.3
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the mean coverage of the algorithms, we weight each program’s contribution
by the program’s lines of code when computing the arithmetic mean.
The kind of coverage reported depends on the type of the program. We

distinguish between benchmarks and other programs. Benchmarks encode
a single constraint that must be solved as a conditional in an if-statement.
For these, we report whether one of the generated test cases covers the target
statement, which indicates that the encoded constraint was solved. Branch
coverage is a bad measure in this case because short-circuit logic operators
manifest as branches in the control flow, meaning that despite solving the
constraint, some “false” branches may remain uncovered. The other programs
contain a more diverse range of execution paths that should be explored. For
these, we report the total branch coverage of the generated test cases.
To avoid adverse effects on a tool’s performance from handling object-

creation [114], each test invokes a single driver method with just numerical
parameters. Thus, the challenge of creating objects as test inputs is absent
in our setup.

5.7.1 Effectiveness and Efficiency

This section discusses the performance of the CW algorithm, answering the
following research questions:

RQ1: Is the CW algorithm more effective in generating test inputs for pro-
grams with non-linear arithmetic path conditions than simplification-
based approaches?

RQ2: On such programs, can it improve the effectiveness of test generators
that employ strong constraint solvers?

RQ3: How efficient is the CW implementation compared to similar test
generators?
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Table 5.2: Coverage and generation (wall-clock) time of the test cases gener-
ated for each program. The Med. columns show the median of seven runs;
the Var. columns show the respective variance. For benchmarks, the coverage
is the percentage of covered target statements; for other programs, it is the
branch coverage. Dots denote zeros. The LoC-Weighted Avg. row lists the
arithmetic mean over all programs, using the LoC as weights to prevent small
programs from dominating the numbers.

Coverage (%) Time (sec.)

Program Med. Var. Med. Var.

coral 78 2.0 1.4 min. 1.6
blind 100 · 1.1 ·
hash 80 · 5.6 0.1
opti 50 · 7.0 0.1

dart 86 · 1.2 ·
power 100 · 1.2 ·
ray 90 · 11 min. 1.9
sine 55 3.7 1.9 0.2
stat 75 · 1.2 ·
tcas 91 · 45.6 1.6
tsafe 92 · 4.8 0.1

LoC-Weighted Avg. 78 1.2 1.2 min. 0.5

RQ1: Is the CW algorithm more effective than simplification for solving
non-linear arithmetic path conditions?

We consider the null-hypothesis that simplification is as effective as the CW
algorithm in solving path conditions with non-linear arithmetic constraints.
To test this hypothesis, we compare the coverage achieved by our algorithm
implementation against that of two other tools that use solvers for linear
constraints, but otherwise rely on simplification:

• SPF-Mixed [85, 87] is a variant of Symbolic PathFinder that attempts
to solve a non-linear arithmetic path condition by solving the decidable
(simple) part, using the solution to concretely execute the complex
part, and then further simplifying all constraints using the results [86].
As suggested in the paper, we enable the randomization heuristic of
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SPF-Mixed. In addition, we increase the maximum number of solving
tries to three per path condition instead of the default of one.

• jCUTE [89] is a classic concolic testing tool. During the construction
of a path condition, it substitutes parts of non-linear terms with their
concrete run-time value to ensure that all constraints remain linear. In
our setup, jCUTE randomizes the initial concrete values and explores
paths in random order.

Both simplification-based tools achieve a much lower coverage: the weighted
average of the median coverages is 41% for jCUTE and 26% for SPF-Mixed;
the respective standard deviations are 1.8% and 0.5%. This is far from the
78% coverage achieved by our algorithm (s.d. 1.2%), see Table 5.2. On each
program, our algorithm achieves a higher coverage than jCUTE. Except for
stat and tcas , the same is true for SPF-Mixed. All differences are significant.
Furthermore, the inputs generated by our algorithm subsume the inputs of
the other tools except for a small fraction of ray and stat inputs, which shows
that the differences are true improvements. The draw between our algorithm
and SPF-Mixed on tcas , which lacks non-linear operations, indicates that the
differences originate in the management of non-linear constraints.
Consequently, we reject the null-hypothesis; the results suggest that the

CW algorithm is more effective than the simplification used in both tools.

RQ2: Can the algorithm improve the effectiveness of concolic test generators
that use strong solvers?

As discussed in section 5.1, strong constraint solvers allow test generators
to solve more path conditions directly, thereby reducing the need to resort
to approximations like simplification. For such tools, the CW algorithm
can serve as a fallback strategy whenever the solver cannot handle the path
condition. However, such cases might be rare with state-of-the-art solvers.
We therefore investigate the null-hypothesis that combining state-of-the-art
concolic test generators with the CW algorithm does not improve the achieved
coverage. To test the hypothesis, we consider combinations of our algorithm
with two tools:
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• SPF-CORAL, a symbolic execution tool that relies on the CORAL
solver [94, 13]. CORAL targets non-linear arithmetic constraints and
uses the Particle Swarm Optimization [64] search heuristic to find
solutions. We use SPF-CORAL in the default configuration set in the
SPF repository.

• Pex10 [103], a concolic test generator that employs fitness-guided explo-
ration [115] and a strong SMT solver (Z3 [25]). Because our experiment
focuses on coverage rather than user responsiveness, we increase Pex’s
solver timeout to five seconds and allow it to run up to 500 iterations
without generating new tests.

To avoid the cost of implementing the tool combinations, we simulate them
by unifying the generated tests. For each run and each program, we take
the union of the inputs generated by SPF-CORAL and the CW algorithm,
and likewise for Pex. This allows us to measure the increase in coverage
that our algorithm contributes; inputs that lead to duplicated execution of
already-covered program paths have no effect on the coverage.
The combination with the CW algorithm raises the averaged median

coverage of SPF-CORAL from 62% to 82% (s.d. 0.2% and 0.9%), and that
of Pex from 68% to 82% (s.d. 0.5% and 1.5%). Both tools achieve higher
coverage on the coral , opti , ray , and sine programs. SPF-CORAL furthermore
improves on hash, dart , and tcas, while Pex improves on tsafe. In the case
of sine, this is not surprising: the problematic example2 method in Figure 5.1
is a snippet of this program. In the case of coral , the tools and our algorithm
complement each other: the union of test inputs achieves higher coverage
than each set of inputs alone.
A one-tailed Mann–Whitney U-test on the coverages of each program be-

tween SPF-CORAL or Pex and its combination with our algorithm indicates
that all improvements are significant. We therefore reject the null-hypothesis
and conclude that our algorithm can improve the effectiveness of test genera-
tors that use strong constraint solvers.

10Pex is a C# tool. For the evaluation, we translated the whole program corpus to C#,
generated inputs with Pex, and made the inputs into Java unit tests. The coverage for Pex
is thus measured like that of other tools and directly comparable.
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RQ3: How efficient is the CW algorithm?

Efficiency, that is, test coverage achieved per unit of generation time, depends
on implementation choices. To reduce the impact of unrelated details—such
as the depth-first path exploration strategy that leads to 5 min. timeouts in
ray—, we compare our SPF-based implementation against the two SPF-based
test generators SPF-Mixed and SPF-CORAL.
Averaged over all programs, our CW implementation (1.1% coverage /

second) is about 1.6 times as efficient as SPF-CORAL (0.7%/s) and 5.5 times
as efficient as SPF-Mixed (0.2%/s) in generating test inputs. One reason
for the higher efficiency is the inability of SPF-Mixed and SPF-CORAL to
generate inputs for the hash and sine programs, which contain bit-operations
and library calls. However, even on the coral benchmarks, which lack such
problems, our algorithm is only slightly slower than SPF-Mixed (1.4 min.
vs. 1.2 min), but delivers considerably more solutions (78% vs. 12%); it is
1.8 times as fast as SPF-CORAL while achieving 92% of the coverage (78%
vs. 85%). The coverage differences of all programs are significant (α = 0.01),
as are the time differences for SPF-CORAL. For SPF-Mixed, only 6 of 11
times differ significantly (α = 0.05). In summary, these numbers suggest that
the CW algorithm is more efficient than its two competitors.

5.7.2 Influence of Algorithm Parameters

This section discusses how the parameters of the CW algorithm influence
its effectiveness. In our experiments, we vary a single parameter at a time
and compare the variation’s coverage with the baseline coverage shown in
Table 5.2.

RQ4: How much does the tabu mechanism improve the effectiveness of the
algorithm?

Without the marking of variables as tabu, the overall coverage drops to 62%
(s.d. 0.9%), which is 0.79 times (Table 5.3) the 78% baseline coverage. Thus,
the tabu mechanism contributes a relative performance increase of 26% to
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the algorithm. This performance change appears consistently over all runs of
the algorithm; the difference is significant for all programs except sine, whose
hard floating-point to bit-vector conversion emphasizes the random walk
aspect of our algorithm. Once tabu marking is enabled, however, the chosen
number of tabu iterations seems to have little influence on the algorithm’s
performance: increasing it from the default T = min(3, |vars(N )|/2) to
T = min(5, |vars(N )|), for example, lacks any effect on the coverage.

RQ5: How much does the bisection step improve the effectiveness of the
algorithm?

Disabling the estimation of solutions through linear approximation—the bisec-
tion step explained in section 5.2—reduces the overall coverage to 0.92 times
the baseline. Thus, the bisection step improves the overall coverage from 72%
(s.d. 1.4%) to 78%, a relative increase of about 8%. Without bisection, the
algorithm consistently achieves lower coverage on the coral , hash, and opti
benchmarks (significant for α = 0.01). It therefore seems that the bisection
step steers the random walk towards promising areas, resulting in more found
solutions.

RQ6: What influence do the number of neighbors and number of steps have
on the performance?

For the majority of programs in the corpus, granting the algorithm more steps
to find a solution or choosing among more neighbors has little effect on the
coverage. The average coverage for just 10 steps per constraint is 0.95 times
the baseline coverage. Likewise, allowing more than the 150 baseline steps
per constraint leads to the same overall coverage. It appears that for most
programs, the constraints are simple enough that few steps suffice to find a
solution. However, for the complex constraints of coral , more steps increase
the coverage, but only for 10 steps per constraint is the difference to the
baseline significant (α = 0.05). The price for the 27% relative coverage
improvement from 10 steps to 300 steps per constraint is a relative slowdown
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of 23%: the test generation time grows from 1.3 minutes (s.d. 0.3s) for 10 steps
to 1.6 minutes (s.d. 3.2s) for 300 steps per constraint.

The number of neighbors generated per step seems to have little influence
on the overall coverage. The coverage differences are statistically significant
(α = 0.05) only for 100 and for 3 neighbors. The slowdown from generating
more neighbors is similar to that of increasing the number of steps.

5.8 Limitations and Future Work

Evaluation—Threats to Validity

We try to ensure conclusion validity of our evaluation by checking the statis-
tical significance of measured differences with a robust non-parametric test at
a high level α = 0.01. One threat to the construct validity of our experiments
is the use of coverage as effectiveness metric. While branch coverage is a
good predictor for the bug-detection capability of test suites [45], it does
not measure how useful the generated inputs are for the user. Lacking a
user study, we are unfortunately limited to this common surrogate metric.
Another threat, in particular for RQ1, is the aggregate nature of coverage:
two test suites with similar coverage may complement each other, making
them incomparable. We mitigate this risk in by checking whether the test
suite with higher coverage subsumes the one with lower coverage.
The internal validity of our experiments is threatened by our comparison

of different tools. Many implementation details, not just constraint solving,
influence the performance. We try to lessen this problem by (1) including a
program in the corpus (tcas) that lacks non-linear operations and ensuring
that the compared tools have similar effectiveness (RQ1); and (2) limiting
the efficiency comparison to tools sharing the same SPF-based infrastructure
(RQ3).

Finally, the external validity of our evaluation is threatened by our focused
corpus. Despite over one third of programs being excerpts of realistic programs,
the corpus does not constitute a random sample of programs with non-linear
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path conditions. Consequently, our results may generalize poorly. A larger
study would mitigate this risk, but is unfortunately too expensive at this time
as the used tools (SPF, jCUTE, Pex) require substantial manual setup.

Algorithm

The CW algorithm currently cannot create objects as test inputs. While it
could employ, among others, feedback-directed randomization [81] or heuristic
search [62, 40] to fill this gap, we plan to investigate in future work how exactly
object randomization relates to the notions of continuity and neighborhood
used by its local search strategy.

For arithmetic constraints, the algorithm assumes an (at least) piece-wise
continuity of the constraint error score functions to identify the most promising
neighbor. While the assumption seems to work well in practice, other modes
of finding solutions may be more effective for highly non-continuous operations
like hash functions.
The algorithm currently makes no provisions for disjunctive constraints,

for which the linear constraints can describe non-contiguous regions. While
disjunctions cannot occur if boolean connectives are encoded in the program’s
control-flow, as assumed in this dissertation, tools that work under different
assumptions may have to spawn multiple instances of the algorithm. Support
for non-contiguous regions within a subset of dimensions would improve the
algorithm’s applicability in such scenarios.

Implementation

The CW implementation described in section 5.6 assumes that the native
methods occurring in constraints are pure, that is, lack side-effects. A more
general implementation could purge this assumptions by integrating a notion
of setup and tear-down methods—as in unit tests—that are executed before
and after each constraint evaluation, and by maintaining the program’s
execution order for native methods. Furthermore, a better implementation
could accelerate the algorithm (1) by executing constraint expressions directly
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in the JVM instead of interpreting them; (2) by caching the error scores of
constraints whose inputs remained unchanged during a step; and (3) by using
memoized solutions [110, 116] to seed the starting point.

5.9 Summary

The path conditions of programs may contain calls to library methods and
complicated arithmetic constraints that are infeasible to solve. Yet, test input
generators based on symbolic and concolic execution must solve such path
conditions to systematically explore the program paths and produce high
coverage tests. Existing approaches either simplify complicated constraints,
or rely on specialized constraint solvers. However, simplification yields few
solutions; and specialized constraint solvers lack support for native library
methods. To address both limitations, this chapter introduces the CW
algorithm for solving path conditions. An evaluation on a corpus of small to
medium sized programs shows that the algorithm generates tests with higher
coverage than simplification-based tools and moreover improves the coverage
of state-of-the-art concolic test generators.
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Chapter 6

Research Directions

The previous chapters presented all algorithms in the context of small sequen-
tial programming languages that operate on primitive values. In this chapter,
we discuss the challenges of applying symcretic execution to richer languages
that support objects and concurrency.

6.1 Support for Objects

Many programs operate not only on primitive data such as integers and
floating point numbers, but also on structured data objects and references
to such objects. Extending symcretic execution to these programs requires
adjustments to both of its phases.

6.1.1 Symbolic Phase

Supporting objects in the first phase of symcretic execution requires a symbolic
representation of objects and references to them. The representation must
support read and write operations to the named fields that comprise an
object, as well as constraints on the values of fields that may appear in branch
conditions. The representation must furthermore support operations and
constraints on the references themselves. An example operation on references
is pointer arithmetic, example constraints are equality or sub-type constraints.
Equality constraints between references must be transitive: asserting r = r′

for symbolic references r and r′ must imply that r.f = r′.f for all fields f .
Unfortunately, as of 2014, SMT solvers do not typically include a theory of

symbolic objects and references. Support for these must be added manually.
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Two choices for adding support are encoding references at the SMT solver
level, or adding a second, dedicated solver that synchronizes its results with
the SMT solver.

Supporting symbolic objects at the level of the SMT solver allows different
encodings. A first option is to encode objects via arrays [19] if the (SMT)
constraint solver supports the theory of arrays [77]. In this encoding, references
are symbolic integers. A declared field defines an array whose entries are the
values of the field for the object with that index. Thus, reading a field, for
example z = r.f, corresponds to an array read operation select(f, r), where f
is the (symbolic) array and r is the index; writing a field, for example r.f = z,
corresponds to an array write operation store(f, r, z). While simple to add,
this encoding does not support pointer arithmetic because it does not capture
the underlying memory layout.
A second option for supporting objects at the level of the SMT solver is

to encode them as boolean satisfiability problems, similar to relational logic
solvers [63, 105]. The challenge with such an encoding is that techniques
developed for relational logic assume a finite universe. For symcretic execution,
this universe must be derived automatically from the code of the input program.
Like the array encoding, this encoding lacks support for pointer arithmetic.

Support for objects can also be added at a more direct level by combining a
dedicated solver for reference constraints with the SMT solver for arithmetic
constraints. A simple implementation of such direct object management
assigns each symbolic reference a dedicated object that stores the symbolic field
values. This creates the opportunity to apply existing lazy object-initialization
techniques that have been developed for symbolic execution [65, 28]. However
the challenge becomes coordinating the two solvers because field values may
be subject to primitive constraints, and equality between references must be
transitive, including primitive field values. Thus, much like an SMT solver
itself [26], the reference solver must communicate its assumptions to the
arithmetic solver and vice versa. It may therefore be beneficial to instead
implement direct reference handling as a dedicated theory in the SMT solver.
Research on such theories and their efficient implementation will not only
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1 static Object makeObject() {
2 return new Object();
3 }
4
5 static void aliasError() {
6 Object r1 = makeObject();
7 Object r2 = makeObject();
8 if (r1 != r2) {
9 error();

10 }
11 }

Figure 6.1: Example program that shows how potential aliases inflate the
search space.

benefit symcretic execution, but benefit techniques based on symbolic and
concolic execution in general.

Aliases

Regardless of the object encoding, the symbolic backward execution must
account for aliasing of symbolic references. Two references r and r′ are
aliased if they refer to the same object [3]. Aliasing matters because reading
the field r.f after first writing r.f and then r′.f yields the second written
value if r and r′ are aliased, and the first value if they are not. Hence,
the backward execution must enforce the respective aliasing constraints on
symbolic references as it explores the execution path. In contrast, concolic
test generators largely avoid aliasing problems because the concrete execution
determines the aliasing of all references except for those that are inputs.
The program in Figure 6.1 exemplifies how potential aliases inflate the

search space during backward execution. The aliasError method contains an
error in line 9 that occurs if the makeObject factory method were to return
a different reference for both calls. Starting from the error and stepping
backwards, the execution collects the constraint r1 6= r2 for the symbolic
references r1 and r2. Neither reference has appeared in the program thus
far. Therefore, r1 can either point to null or a fresh object o1. Likewise, r2
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can point to null or a fresh object o2. However, r2 may also point to o1. In
total, line 8 allows for six reference–object assignments, only two of which
the constraint r1 6= r2 rules out. Further references in the method would
contribute additional factors to the number of assignments because each one
could alias an existing object, or refer to a fresh object. Depending on how
object support was implemented, either the constraint solver or the backward
execution itself must cope with this exponential growth of value assignments.
A heuristic strategy for mitigating the growth of value assignments is to

bound the nesting level of the object graph [27]. In this approach, symbolic
objects discovered by following more than k references can no longer point to
a fresh object; they must always point to an existing object. The intuition is
that the reference constraints in path conditions can often be satisfied through
small object graphs. However, further research is necessary to determine
conditions under which k-bounding is complete, and how often these hold in
practice.
Translating points-to information [7, 95] into reference constraints can

mitigate the growth of value assignments. For example, knowing that the
calls to the makeObject method in lines 6 and 7 of Figure 6.1 return the
same reference would exclude the satisfying reference–object assignments,
thereby making the error unreachable. Unfortunately, the benefits of points-
to information can be limited in important cases because the customary
identification of static object allocation sites with may-alias classes [3] can be
too imprecise if too little context is included. For example, assuming context-
insensitive analysis, all (fresh) objects returned by a factory method belong to
the same may-alias class of references. Such alias information would therefore
have no effect on the symcretic execution of a program similar to that in
Figure 6.1, in which makeObject returns new objects. Nevertheless, adopting
and integrating a points-to analysis into symcretic execution, possibly as pre-
processing step, could shrink the search space significantly. The development
and study of such a points-to analysis is an important direction for future
work.
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Type Constraints

In typed object-oriented languages like Java, constraints can limit the type
of object to which a reference may point. These type constraints originate
from branches that use runtime type information, such as Java’s instanceof
expression, and from calls to virtual methods.
Virtual method calls are dispatched depending on the actual type of the

receiver object: calling a virtual method m on a reference r of static type A

invokes the implementation of m in one of A’s sub-classes. Thus, if r points
to an object of type B, then B’s implementation of m is executed. Virtual
method calls therefore act as type switches. Assuming that the complete type
hierarchy is known and static, the call r.m() is equivalent to the following
chain of branches:

1 if (r.getClass() == A) { A.m(r); } // Pass r as ’this’ to A.m()

2 else ... // List sub-classes

3 else if (r.getClass() == C) { C.m(r); }

The symbolic execution phase must hence track the types of symbolic
objects. Otherwise, implementations of virtual methods belonging to different
types may be invoked on the same object, leading to invalid execution paths.

However, insisting on a single type per symbolic object can result in repeated
executions. A sub-class shares the implementation of a virtual method with
its super-class if it does not override the method. If the symbolic phase
considers only one type at a time, an object that can have a range of (sub-)
types requires multiple executions—one per type. This means the same
virtual method implementation may be considered repeatedly. To avoid this
inefficiency, type constraints for objects should be implemented as sub-type
constraints that designate sub-trees (or sub-graphs with multiple inheritance)
in the class hierarchy.
Adding support for sub-type constraints is a central aspect of adapting

symcretic execution to object-oriented languages. One strategy for imple-
menting such constraints is to push an algebraic encoding of the program’s
type hierarchy into the SMT solver [10]. Another strategy is to create a
custom solver theory [92] for sub-type constraints. This can lead to significant
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performance improvements over the algebraic encoding. Work on extending
the solvers to support incremental solving could improve performance further.

6.1.2 Concrete Phase

Supporting objects in the concrete phase of symcretic execution poses both
research and engineering challenges.
The research challenges concern improving heuristic search algorithms

that can solve constraints that involve objects and graph structures. Such
constraints may be generated by the symbolic phase when it cannot solve
the constraints, for example because they involve external method calls, or
because they are too expensive to solve symbolically. A key aspect affecting
the strength of a heuristic solver is how the solver measures the fitness of
candidate solutions (neighbors in the concolic walk algorithm). While numeric
constraints, such as x ≥ 3 offer an intuitive way of measuring fitness, compare
Algorithm 5.2 on page 52, object and type constraints lack such an intuitive
fitness metric. Object fitness metrics and their integration into heuristic
solvers have been explored in the context of search-based software testing
(SBST; see section 2.6). However, SBST typically does not include extensive
symbolic analysis of the target program. The proposed fitness metrics and
solving algorithms could therefore benefit from an integration of knowledge,
such as partial solutions, gained during the symbolic phase of symcretic
execution.
The engineering challenges concern the generation and execution of the

program traces on which the heuristic search operates. If the traces are
executed by an interpreter, as in Cilocnoc then the interpreter must be
extended considerably: to support object operations, the interpreter must
implement the type hierarchy, virtual method calls, field operations, and
some form of memory management. If the traces are executed natively, then
the trace generation mechanism must consider a range of side conditions to
ensure that it produces valid programs. For example, instantiated classes
must be concrete. Thus, a concrete class must be chosen in cases where object
constraints are expressed on abstract classes, or on ranges of sub-classes.
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6.1.3 Object Creation Problem

The preceding discussion has focused on challenges related to supporting
objects within the program execution. However, partial object-oriented
programs, such as libraries, often query the state of an input object to
determine the execution path. For example, an if-statement may contain the
condition list.size > 2 for an input object called list. Because list is an input,
the query whether list.size > 2 is satisfiable cannot be answered by exploring
the program path. Instead, answering the query requires determining whether
one of the object’s legal states satisfies the condition, that is whether it is
possible to generate an object in a satisfying state by only using the object’s
public interface. This problem is known as the object creation problem
(OCP) [114, 102]. It is common to input generation techniques based on
symbolic execution.

Solving the OCP requires finding a sequence of method invocations, starting
with a constructor call, that updates the object’s state such that it satisfies
all given constraints. In our list example, the problem is creating a List

instance with at least three elements. One possible solution is the following
call sequence:

1 List<Object> list = new LinkedList<Object>();

2 list.add(new Object());

3 list.add(new Object();

4 list.add(new Object());

The OCP is undecidable in general. To see this, consider an input object
with a single method that simulates a step of a Turing machine [106] for a
given input. When the machine reaches an accepting state, the method sets
the object’s finished field to true. Determining whether an object o exists that
satisfies the constraint o.finished = true is equivalent to solving the halting
problem.
Finding effective and efficient methods for solving OCPs is an important

research direction. Because OCPs occur in many symbolic executions of
partial object-oriented programs [114], better solving methods will improve
the usefulness of a wide range of programming tools.
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6.2 Support for Concurrency

The output of a concurrent program can depend on its schedule, that is, on
the ordering in which the program operations occur. For example, the order
of the write operations determines which value will be read from a variable
after concurrently writing the values 23 and 42 to it. Covering a target in a
concurrent program thus requires knowledge of a suitable schedule because
the target may be reachable only under some schedules. This makes the
schedule one of the inputs that an input generator must find.

Unfortunately, concurrency aggravates the problem of having a large number
of execution paths to explore that is faced by input generators. At every
scheduling point, concurrency adds branches to the execution path regarding
the order of the events that could happen concurrently at this point. As a
result, a concurrent program can have exponentially more execution paths
than its sequential version, even if techniques like partial order reduction [107,
82, 83] are applied.
Extending symcretic execution to concurrent programs requires two com-

ponents: an efficient way to construct schedules during the symbolic phase,
and a method of integrating scheduling into the concrete phase.

Actor Model

We discuss the challenge of extending symcretic execution to concurrent
programs in the context of the Actor model of concurrency [57]. Our choice
is motivated by two of its properties:

1. The big-step semantics [1] of the Actor model reduce the number of
scheduling points, and therefore the number of execution paths.

2. The communication between concurrent entities is explicit, which sim-
plifies the analysis. In contrast, communication via shared memory,
which is common in multi-threaded programming, can be hard to detect
statically.

Despite our focus on Actors, the presented problems transfer to symcretic exe-
cution of multi-threaded programs and programs that mix the paradigms [99].
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1 actor a { // Create an Actor instance ’a’.
2 int pongCount = 0; // Declare an integer field ’pongCount’ in ’a’.
3
4 message init() { // Handler for the system startup message.
5 b!ping(); // Send message ’ping’ to Actor ’b’.
6 b!pingping();
7 }
8 message pong() { // Handler for ’pong’ messages.
9 this.pongCount++;

10 }
11 }
12
13 actor b {
14 message ping() {
15 a!pong();
16 }
17 message pingping() {
18 a!pong();
19 a!pong();
20 }
21 }

Figure 6.2: Simple ping–pong program that demonstrates the used Actor
language. The program consists of two Actors a and b (lines 1 and 13).
Actor a sends two messages, ping and pingping to Actor b, which replies with
one, respectively two, pong messages (lines 5–6 and 15, 18–19). Upon receiving
a pong message, Actor a increments its pongCount field.

Actors [57, 2] can be thought of as concurrently executing objects that com-
municate via fair asynchronous message passing. Upon receiving a message,
an Actor processes the message in a single atomic step, using a single thread
of execution. While processing the message with the respective message
handler, the Actor can change its state, send messages, and create other
Actors. Unlike threads, Actors never share state. Messages may arrive out
of order: despite an Actor first sending the message m1 and then m2 while
processing a message, the recipient may first see m2 and then m1.

Figure 6.2 shows an example Actor program. The program consists of two
Actors a and b (lines 1 and 13) that exchange messages: Actor a sends two
messages, ping and pingping to Actor b, which replies with one, respectively
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Figure 6.3: Sequence diagram showing one of the message schedules of the
ping–pong program from Figure 6.2. Other schedules exist: for example, the
ping and pingping messages could arrive in reversed order because they are
sent as a reaction to the same message.

two, pong messages (lines 5–6 and 15, 18–19). Upon receiving a pong, Actor a

increments its pongCount field. Figure 6.3 shows one possible schedule of the
program.

To simplify the exposition, the used language makes the following provisions:
The actor keyword defines an Actor instance (as opposed to a class of Actors).
Actor names are visible globally; thus, Actor a knows Actor b and vice versa
without any introduction. Actors send messages using the bang operator
(!) and define handlers for the messages they understand using the message

keyword. Upon receiving a message, the respective handler is executed. The
system starts by sending the init message to the first defined Actor (here: a).

6.2.1 Symbolic Phase

A central problem when extending symbolic backward execution to Actor
programs is the efficient construction and navigation of the message schedule.
First, in contrast to the sequential case discussed in section 4.2, the backward
execution must now consider that reaching a target may require multiple
messages that were sent concurrently (in the happens-before sense [71]) by
independent Actors. Consequently, the search for an execution path from a
target to an entry point can no longer rely on simply moving backwards in
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1 class SynchronousError {
2 int count = 0
3
4 void init() {
5 this.failIfPositive(); // Function call
6 this.count++;
7 }
8 void failIfPositive() {
9 if (this.count > 0) {

10 error();
11 }
12 }
13 }

Figure 6.4: Sequential program in which an object checks an error condition
using method calls (synchronous messages). Within the init method, the call
to the failIfPositive() method occurs before incrementing the count field. Thus,
the error condition (line 10) cannot be triggered.

the call graph. Second, the backward execution must consider that a target
may be reachable despite some of the participating Actors being stuck in
infinite loops. The remainder of this section illustrates both challenges.

Backward Exploration of Actor Programs

Recall that the symbolic phase of symcretic execution of sequential programs
explores the call graph backwards—from callee to caller—until it finds an
entry point. Intuitively, this backward exploration corresponds to unwinding
the call stack in the single thread of execution. For example, moving from the
failIfPositive method in line 8 of the program displayed in Figure 6.4 to its call
site in line 5 corresponds to entering the stack frame of the init method, which
must have been under that of the failIfPositive method. The call sequence
graph in Figure 6.5 illustrates this step.
The sequential backward execution relies on two guarantees: (1) At any

program point, the state was influenced only by operations that lie along the
program path from the point to the program entry point. (2) Operations that
follow a call site cannot influence the execution within the called method.
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Figure 6.5: Sequence diagram showing the (only) schedule of events in the
program from Figure 6.4.

Figure 6.6: Message send graph of the ping–pong program from Figure 6.2.
The nodes of the graph are the message handlers defined in the program. Two
nodes m1 and m2 are connected by a (directed) edge from m1 to m2 if m1

sends a message of type m2.

Thus, while moving backwards from the target in line 10 of the example
program (Figure 6.4), it is safe to ignore the increment of the count field in
line 6 because it must happen after the call. Likewise, no other operation
could have incremented the count field, which guarantees that the target is
unreachable.
For Actor programs, this call graph exploration can be adapted to an

exploration of the message send graph. The nodes of a program’s message
send graph are the defined message handlers. Two nodes m1 and m2 are
connected by a (directed) edge from m1 to m2 if m1 sends a message of type
m2. Similar to a method call site, the position in m1’s body where the send
occurs is called the message send site. Figure 6.6 shows the message send
graph of the ping–pong program from Figure 6.2.
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1 actor asynchronousError {
2 int count = 0
3
4 message init() {
5 this!failIfPositive(); // Message send
6 this.count++;
7 }
8 message failIfPositive() {
9 if (this.count > 0) {

10 error();
11 }
12 }
13 }

Figure 6.7: Program in which an Actor checks an error condition using asyn-
chronous messages. Within the init message handler, sending the failIfPositive()
message occurs before incrementing the count field. However, as message
handlers must complete before the next message can be processed, the error
condition (line 10) is triggered.

Unfortunately, following message send edges backwards lacks the guarantees
of following call edges because message delivery is asynchronous and message
handlers always take full effect in an Actor before the net message is processed.

The backward exploration thus cannot always ignore statements that follow
a send site. For example, consider the Actor-version of the previous example,
which is shown in Figure 6.7. The Actorized example replaces the call to
the failIfPositive method with a message send (line 5). As the init handler
must complete before the sent message can be handled, the Actor’s count

field has value 1 when the failIfPositive handler executes. Consequently, the
error on line 10 is triggered. The sequence diagram (Figure 6.8) illustrates
the execution. The symbolic phase must therefore explore message handlers
starting from the end, not the send site, or it may miss feasible targets.

A more severe problem is that the state of an Actor at a program point is
not necessarily fully determined by operations along the program path that
runs from the point to the program entry point. Instead, the Actor’s state
may depend on messages sent in parallel along other program paths. The
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Figure 6.8: Sequence diagram showing the (only) schedule of events in the
program from Figure 6.7.

order in which an Actor processes such messages—the schedule—determines
its state.

For example, assume that we want to cover the error condition in line 14 of
the program shown in Figure 6.9. Backwards execution within the enclosing
failIfOne message handler yields the path condition this.count = 1. Following
the message send graph (Figure 6.10) backwards leads to the init handler, which
is the program’s entry point. As discussed above, the backward execution
must start from the end of init, which generates three symbolic messages: the
failIfOne message that brought us here, and two increment messages. These
three messages are causally independent and may arrive at the target in
any order. The path condition is satisfied only if one increment message is
processed before the failIfOne message.

The example shows that the symbolic phase of symcretic execution of Actor
programs must do more than traverse the message send graph backwards.
Upon reaching the top of a message handler, it must determine which messages
in which order are necessary to satisfy the path condition within the current
message handler. In the example, upon reaching line 12 after starting from the
target in line 14, it must determine that (exactly) one increment message must
arrive before the failIfOne message. Thus, it must solve a variant of the object
creation problem to find the required messages. Next, the backward execution
must find a set of suitable send sites that generate these messages. The
send sites must allow the messages to arrive in a satisfying order. Backward
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1 actor scheduleDependentError {
2 int count = 0;
3
4 message init() { // When the system starts
5 this!failIfOne(); // send three messages to self.
6 this!increment();
7 this!increment();
8 }
9 message increment() {

10 this.count++;
11 }
12 message failIfOne() {
13 if (this.count == 1) { // Satisfied for the message schedule
14 error(); // increment → failIfOne → increment.
15 }
16 }

Figure 6.9: Actor program in which the reachability of the error condition
(line 14) depends on the message schedule. The three messages sent in the
init handler are independent and may arrive in arbitrary order. The error
condition is triggered only if exactly one of the increment messages arrives
before the failIfOne message.

Figure 6.10: Message send graph of the program shown in Figure 6.9.
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execution must then continue at the message handlers containing the send
sites. Ultimately, the process must converge towards a single entry point
message handler.
Extending symcretic execution to Actor programs therefore depends on a

viable approach to solving object creation problems.

Reduction Techniques

Ignoring the undecidable nature of the problem for a moment, exhaustive
path and schedule exploration, for example using iterative deepening [93, 69],
is viable only for small programs because of the exponential growth of the
search space in the number of branches and scheduling points.
If the search for an exact solution becomes infeasible, the symbolic phase

may choose to approximate the schedule. Schedules and execution paths
obtained through approximation can then guide the concrete execution. The
following three candidate approximations have been explored by the author
in previous work:

Synchronization Constraints [30]. Synchronizers [42, 41] are declarative
synchronization constraints that can be imposed on groups of Actors. The
constraints express under which conditions an Actor is able to handle a
message. Until the conditions are met, the message stays in the Actor’s
message queue. The constraints have a global effect and affect all messages
an Actor receives. Conceptually, a Synchronizer can be seen as a special
kind of Meta-Actor [79, 109] that observes and limits the message dispatch of
other Actors. The conventional form of Synchronizers supports disabling and
atomicity constraints:

• Disabling constraints prevent the constrained Actor from handling
messages that match a given pattern. For example, by disabling the
handlers for all but the initialization message, a disabling constraint
ensures that an Actor dispatches (starts to process) the initialization
message before it dispatches any other message.
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• Atomicity constraints coordinate groups of Actors by bundling messages
into indivisible sets. A constraint enforces that either all the messages
in a set are dispatched, or none of them are (there is no partial delivery).
The constraint provides spatial atomicity. An atomicity constraint can,
for example, implement a simple online music payment scheme by fusing
the deduct money from credit card message with the enable download
message.

Atomic Sets [34]. Another approximation are atomic sets [37, 108], which
coarsen the concurrency structure of the program and thus shrink the search
space. Atomic sets can be dynamically inferred in a pre-processing step [34].

An atomic set is a group of data fields inside an object indicating that the
fields are connected by a consistency invariant. Objects can contain multiple
disjoint atomic sets. Aliases extend atomic sets beyond object boundaries.
For example, consider the following consistency invariant of a list object: the
value of the list’s length field must equal the number of elements in the entries

array used to store the list entries. Hence, the fields length and entries form
an atomic set. Instead of requiring an explicit expression of the consistency
invariant like length == entries.length, an atomic set is complemented by one or
more units of work. A unit of work is a method that preserves the consistency
of its associated atomic sets when executed sequentially. Thus, atomic sets can
ensure the application’s consistency by inserting synchronization operations
that guarantee the sequential execution of all units of work. Atomic sets
therefore reduce the amount of concurrency in the program, and consequently
the number of schedules that have to be examined.

Session Types [20]. A further candidate approximation are session types [58,
59, 20], which express the order of messages sent by Actors [2] (or processes).
The intended use of session types is to statically check whether a group
of processes communicates according to a given specification. With the
specification safely over-approximating the system behavior, it can be used
to find candidate execution paths whose details have to be filled in using
concrete execution.
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In addition, limiting the exploration to unique representatives of every schedule
class modulo the happens-before relation (partial-order reduction [107, 82, 83])
can shrink the search space significantly. Computing complete partial order
reductions requires a full view of the search space, which is unavailable during
backward execution. However, dynamic partial order reduction techniques [39,
100] can approximate the reduction under limited knowledge. The integration
of such techniques into symcretic execution is the topic of future research.

Finally, treating scheduling as an orthogonal aspect to finding data inputs,
as proposed in existing approaches and tools [90, 89, 84, 85, 87, 111, 72, 117],
may prove insufficient for some programs. Dependencies between a concurrent
program’s schedule and its data inputs arise, for example, if the number of
Actors created in the program depends on an input parameter. Ignoring
the dependency can be problematic if reaching a target statement requires a
minimum number of participating Actors. Adapting the existing approaches
from their original usage scenarios to symcretic execution therefore requires
further investigation.

Local Non-Termination

A second challenge for the efficient construction and navigation of the message
schedule in Actor programs is local non-termination of Actors. In sequential
programs, an infinite loop on the path leading to a target effectively makes
the target unreachable. However, in Actor programs, a message handler of
one Actor may fail to terminate, but the target may still be reachable in
parallel.

For example, consider the program shown in Figure 6.11. The init handler of
the infiniteLoop Actor (line 2) contains an infinite loop that sends fail messages
to the triggeredError Actor. Thus, the init handler never terminates. Yet, a
single fail message suffices to trigger the error in the triggeredError Actor, which
is therefore reachable. A schedule navigation and construction mechanism
should be able to cope with such cases without getting stuck.
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1 actor infiniteLoop {
2 message init() { // When the system starts
3 while (true) { // send messages in an infinite loop.
4 triggeredError!fail();
5 }
6 }
7 }
8
9 actor triggeredError {

10 message fail() { // Fail on the first received message.
11 error();
12 }
13 }

Figure 6.11: Actor program whose error condition in the triggeredError Actor
(line 11) is reachable despite the infiniteLoop Actor being stuck in an infinite
loop.

6.2.2 Concrete Phase

The discussion from integrating concurrency with the symbolic phase of
symcretic execution extends to the concrete phase. The central research
question is how to efficiently find schedules that satisfy the constraints derived
during the symbolic phase and potentially learned during prior executions of
the target program [34, 61]. Thus, an important direction of future research is
devising fitness functions for schedules that allow quick convergence towards a
solution. Prior work in this area [117] relies on ad-hoc fitness functions to solve
the problem at hand; a systematic investigation, potentially incorporating
coverage information [101], could help to better understand the strengths and
weaknesses of such fitness functions. In addition to the definition of fitness
functions, it is unclear how partial order reduction can be integrated with
heuristic search and the scheduling constraints derived during the symbolic
phase.
The engineering challenges of supporting Actors in the concrete phase of

symcretic execution concern the implementation of scheduling. The concrete
phase must support concurrency while allowing the enforcement of scheduling
constraints. The scheduling constraints are necessary to guide the execution
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towards a satisfying schedule while avoiding known non-solution schedules. At
the same time, the scheduling constraints must respect concurrency effects in
the target program: a simple linearization of the schedule that sequentializes
the target program, for example, cannot handle local non-termination of
individual Actors. Thus, the concrete execution environment must implement
an Actor runtime system. In particular it must implement the scheduler.

Implementing the concrete phase as an interpreter simplifies meeting these
requirements. However, building a faithful interpreter for the whole Actor
language can be tricky as the language semantics may not be formalized. For
example, there is no formal specification of the Akka framework [12]; the
implementation is the specification. Another difficulty is achieving satisfying
performance. Translating the trace generated by the symbolic phase to code
that can be executed on the target platform avoids these problems. However,
the challenges are similar to the ones for supporting objects.
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Chapter 7

Conclusions

This dissertation focuses on the problem of the effective and efficient generation
of program inputs that trigger the execution of a specific statement or other
target in the program. Such target-specific inputs are useful, for example,
in debugging, where they allow programmers to step through the program
towards a bug, or in regression testing, where they constitute additional test
cases that cover a changed piece of code.

The dissertation describes a novel target-specific input generation method
called symcretic execution (chapter 3 and chapter 4). Symcretic execution first
finds an execution path to the target and then solves the constraints along
the path. It avoids considering irrelevant paths by exploring the program
backwards, starting at the target and moving towards the program entry.
At the same time, it excludes infeasible paths. To mitigate the problems
of undecidable constraints and data-dependent loops, it integrates heuristic
constraint solving based on concrete execution of (parts of) the program. A
comparison with related approaches and an empirical evaluation show that
symcretic execution finds more inputs than concolic testing while exploring
fewer paths.

The problem of undecidable constraints, which motivates the concrete phase
of symcretic execution, also appears in customary concolic and symbolic exe-
cution. The novel algorithm for solving complex arithmetic path conditions
described in chapter 5 not only applies to the concrete phase of symcretic
execution, but also to concolic and symbolic execution. The algorithm, called
concolic walk, uses heuristic search based on a geometric interpretation of
the task of finding inputs. An evaluation shows that the concolic walk algo-
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rithm finds more solutions than customary simplification-based heuristics and
furthermore improves the strength of state-of-the-art concolic test generators.

The dissertation presents all algorithms in the context of small imperative
sequential programming languages. While the algorithms can be extended
to include objects and concurrency, making these extensions requires further
research to maintain the efficiency of the algorithms. The respective challenges
are discussed in chapter 6.
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