
CryptVMI: Encrypted Virtual Machine Introspection
in the Cloud

Fangzhou Yao, Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign

{yao6, rhc}@illinois.edu

Abstract—Virtualization techniques are the key in both public
and private cloud computing environments. In such environments,
multiple virtual instances are running on the same physical
machine. The logical isolation between systems makes security
assurance weaker than physically isolated systems. Thus, Virtual
Machine Introspection techniques become essential to prevent the
virtual system from being vulnerable to attacks. However, this
technique breaks down the borders of the segregation between
multiple tenants, which should be avoided in a public cloud
computing environment. In this paper, we focus on building an
encrypted Virtual Machine Introspection system, CryptVMI, to
address the above concern, especially in a public cloud system.
Our approach maintains a query handler on the management
node to handle encrypted queries from user clients. We pass the
query to the corresponding compute node that holds the virtual
instance queried. The introspection application deployed on the
compute node processes the query and acquires the encrypted
results from the virtual instance for the user. This work shows
our design and preliminary implementation of this system.

I. INTRODUCTION

As cloud computing grows in popularity, many companies
are moving to the cloud. With cloud computing, companies
do not have to spend a significant portion of their time to
build and maintain their computation and storage infrastruc-
ture. Virtualization has become inevitable in both public and
private cloud computing solutions, such as Amazon EC2 [1]
and OpenStack [2], because it provides better utilization of
resources and reduces the cost by allowing multiple operating
systems (OS) owned by multiple tenants to run concurrently on
the same physical machine. Though multiple OSes are running
in their own virtual machines (VM) and sharing the same
hardware resources, the Virtual Machine Manager (VMM) can
still ensure high availability for users [3].

However, even though a VM is designed to be only able
to access resources in its own space, the traffic between VMs
makes the isolation between systems no longer physical but
logical, and hence the security guarantees are weaker [5]. A
compromised VM can spread malware quickly and make the
entire environment vulnerable to more attacks. This fact has
led to the appearance of Virtual Machine Introspection (VMI)
techniques. VMI tools inspect a VM from a trustworthy outside
environment, and they are able to access the entire system state
of a VM [6]. Thus, security systems like Intrusion Detection
Systems (IDS) can be built with this technique over the cloud
for greater attack resistance, while providing an excellent view
of what is happening in the virtual instances [7].

There are many private cloud systems having already used
VMI to enhance their security, but concerns are raised for

public cloud systems, since this technique might break down
the borders of the segregation between multiple tenants [4]. For
instance, if Amazon started using VMI, then the administrators
in Amazon would be able to access the entire state of every
customer’s VM running in their public cloud. This is definitely
not what Amazon’s customers want to happen with respect to
their privacy.

To address this concern, we propose CryptVMI, an en-
crypted Virtual Machine Introspection system, to provide users
complete status of their virtual instances, while keeping the
confidentiality from administrators of the cloud. This system
can be extended to build an IDS on the user end to provide
better security for their system, especially when their cloud
computing framework is running in the public cloud.

The rest of this paper is organized as follows. We first show
our design in Section II for this encrypted VMI system. Next,
we reveal our preliminary implementation details in Section
III. In Section IV, we conclude our work and provide future
approaches.

II. DESIGN

Users can access their VMs through a Secure Shell (SSH)
connection, but this approach only allows them to obtain data
from the inside of VMs, while VMI is done on the host system,
which is the outside. Furthermore, we do not want to expose
the structure of our cloud system, such as on which compute
node a VM is located, or the IP address of the compute
node, namely the host system, since it might cause co-location
attacks [8]. Our objective is to prevent the cloud administrator
from knowing the entire state of a user’s VM while keeping
the transparency to users. We assume that the public cloud
system has been configured, and hence administrators do not
have root on compute nodes.

The design of CryptVMI has two major components. Fig-
ure 1 shows the overview of this system. The first component
handles queries sent from users on the remote clients. Once
the query is processed, it transfers the encrypted data back to
the client, and the client decrypts the data for the user. The
second component involves strategies to acquire the desired
result with encryption. Each of these components is described
in following subsections.

A. Query Handler

The VMI client on the remote end initiates the query re-
quest to the management node in the public cloud environment
through a Secure Sockets Layer (SSL) connection.

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.149

977

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.149

977

Fig. 1. This is the overall design of CryptVMI. The SSH connection is not
part of the VMI system, but it is a general approach that users communicate
with their VMs. Dotted lines represent secure connections or connections with
encrypted components. There is only one remote user and one compute node
shown, but multiple clients and compute nodes are supported in our design.

The query is divided into three parts, the user’s credential,
VM instance name in the cloud system and an encrypted
command. Once the handler receives the query, it first checks
the user’s credential token and the instance name with the
cloud service API to verify if this user has the access to the
current tenant in the cloud and if there is such a VM associated
with this tenant. Then, the handler uses the cloud service API
to locate the IP address of the compute node that holds the
designated VM, and obtains this VM’s name to the hypervisor,
which is different from the instance name provided from the
cloud service API to the user. Communications in this process
are not encrypted, because they are in the internal cloud system
network, and the cloud administrator should have known those
information.

Since the command is encrypted by the user’s public
key cA, the details of the query will not be disclosed. This
command is hence sent to the introspection application on the
compute node, along with the user name and the name of the
designated VM.

B. Introspection Application

The introspection application on the compute node uses
stored private key dA for this specific user to decrypt the
command. Then, it translates the command and invokes corre-
sponding VMI library API to acquire the introspection result.
The result is encrypted with the public key cB , which is also
assigned to this specific user, and transferred back to the query
handler. Finally, the query handler sends the encrypted result
data back to the client, and the client decrypts the result with
the private key dB for the user.

III. PRELIMINARY IMPLEMENTATION

We set up our experiment with OpenStack to simulate
the public cloud environment as Amazon EC2. Thus, the

virtual instances were running in para-virtualization with Xen
hypervisor [9].

We built our VMI application on top of LibVMI, a virtual
machine introspection library focused on reading and writing
memory from VMs [10]. LibVMI has small performance im-
pact and provides the introspection directly on virtual memory,
It also provides functions for accessing CPU registers, pausing
a VM and printing binary data. This fact also guarantees
that we are able to write introspection functions for different
payloads.

We built the communication between the remote client and
the query handler in a RESTful fashion for two reasons. First,
JSON is the standard data structure present in OpenStack API
[2]. It simplifies the process to communicate with OpenStack.
Second, it is the preferred method for distributed applications.
Since we plan to develop the client application into an IDS, we
want the result returned in a standard and extensible criteria.

IV. CONCLUSION AND FUTURE WORK

In this paper, we showed our design and preliminary
implementation of CryptVMI, an encrypted Virtual Machine
Introspection system to keep the confidentiality in the cloud.
We believe that this solution is able to address the concern of
the multi-tenanacy public cloud.

In our presumption, we did not expect the situation that
the administrator in a public cloud would have the direct
full access to a compute node and hence exploit the VMI
library. In future, we will discuss the above issue, as well
as a more secure key distribution and storage framework. We
also plan to integrate this encryption feature into LibVMI by
modifying this library, instead of staying at the application
level. Eventually, we will benchmark the performance and
resistance of our system.

REFERENCES

[1] Amazon Web Services, Elastic Compute Cloud, [Online]. Available:
http://aws.amazon.com/ec2/

[2] Open Stack, Open Source Software for Building Private and Public
Clouds, [Online]. Available: https://www.openstack.org/

[3] T. Burger, The Advantages of Using Virtualization Technology in the
Enterprise, 2012 [Online]. Available: http://goo.gl/2oqZgo

[4] C. Brenton, Introspection: Boon or Bane of Multitenant Security?, 2012
[Online]. Available: http://goo.gl/5aIj6W

[5] M. Factor, D. Hadas, A. Hamama, N. Har’el, E. K. Kolodner, A.
Kurmus, A. Shulman-Peleg and A. Sorniotti, Secure Logical Isolation
for Multi-tenancy in Cloud Storage, 30th IEEE International Conference
on Massive Storage Systems and Technology, 2013.

[6] K. Nance, B. Hay and M. Bishop, Virtual Machine Introspection:
Observation or Interference?, IEEE Security and Privacy, 2008.

[7] T. Garfinkel and M. Rosenblum, A Virtual Machine Introspection Based
Architecture for Intrusion Detection, 10th Annual Network and Dis-
tributed System Security Symposium, 2003.

[8] T. Ristenpart, E. Tromer, H. Shacham and S. Savage, Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds, 16th ACM Conference on Computer and Communications
Security, 2009.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt and A. Warfield, Xen and the Art of Virtualization,
ACM Special Interest Group on Operating Systems Review. Vol. 37(5),
2003.

[10] B. D. Payne, Simplifying Virtual Machine Introspection Using LibVMI,
Sandia Report, 2012.

978978

