
Increasing Consistency in Multi-site Data Stores:

Megastore-CGC and Its Formal Analysis�

Jon Grov1 and Peter Csaba Ölveczky1,2

1 University of Oslo, Norway
2 University of Illinois at Urbana-Champaign, USA

Abstract. Data stores for cloud infrastructures provide limited consis-
tency guarantees, which restricts the applicability of the cloud for many
applications with strong consistency requirements, such as financial and
medical information systems. Megastore is a replicated data store used
in Google’s cloud infrastructure. Data are partitioned into entity groups,
and consistency is only guaranteed if each transaction only accesses data
from a single entity group. This paper extends Megastore to also provide
consistency for transactions accessing data from multiple entity groups,
thereby increasing the applicability of such cloud data stores. Our exten-
sion, Megastore-CGC, achieves this extra consistency without introducing
significant additional message exchanges.We used the formal specification
language and analysis tool Real-TimeMaude throughout the development
of Megastore-CGC. We introduce Megastore-CGC, its Real-Time Maude
specification, and show how Real-Time Maude can estimate the perfor-
mance of Megastore-CGC and model check Megastore-CGC.

1 Introduction

Database facilities are important for applications, such as payroll systems, stock
exchange systems, banking, online auctions, and medical systems, where incon-
sistencies (such as lost or corrupted medication requests or money deposits) can-
not be tolerated. Databases therefore usually provide transactions. A transaction
is a sequence of read and write operations which are executed equivalently to an
atomic execution, and where the concurrent execution of a set of transactions is
equivalent to some sequential execution of the transactions.

The availability and performance of the database is crucial in many of the
applications mentioned above, which would therefore benefit from running on a
cloud infrastructure. However, there is currently limited support for transactions
in cloud-based data stores. A main reason is that data must be replicated across
multiple sites to achieve the availability and scalability expected from cloud ser-
vices. Multi-site replication introduces many challenges, in particular regarding
performance, since ensuring consistency requires costly message exchanges, and
fault tolerance, since sites may go down or messages may be lost.

� This work was partially supported by AFOSR Grant FA8750-11-2-0084.

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 159–174, 2014.
c© Springer International Publishing Switzerland 2014

160 J. Grov and P.C. Ölveczky

One of the most mature cloud-based data management systems providing
some transaction support is Google’s Megastore [1]. Megastore is widely used
both internally at Google, backing services such as GMail and Google+, and
externally through Google’s Platform-as-a-Service offering Google AppEngine.
Megastore is a very complex system, described informally in the overview pa-
per [1]. To facilitate research on the Megastore approach to data management in
the cloud, a precise and more detailed description is needed. We therefore define
in [9] a formal model of (the) Megastore (approach) using the rewriting-logic-
based Real-Time Maude formal specification language [13].

Megastore works well for many less consistency-critical applications, such as
email, social media, or online newspapers, but has some limitations for more
consistency-critical applications: the data must be partitioned into a set of entity
groups, and consistency is only guaranteed if each transaction only accesses data
from a single entity group. This may require a difficult (or impossible) tradeoff
between scalability and consistency, as illustrated in Section 3.

In this paper, we extend Megastore to provide consistency also for transactions
accessing multiple entity groups. Our extension, called Megastore-CGC (“Mega-
store with cross-group consistency”), achieves this additional feature without
reducing Megastore’s performance and fault-tolerance.

Achieving fault-tolerant transaction management is very hard [18]. We there-
fore formally defined Megastore-CGC in Real-Time Maude, which allowed us to
use Real-Time Maude simulations and LTL model checking extensively through-
out the development of Megastore-CGC. To the best of our knowledge, this is
the first time formal methods have been used during the design of a cloud-based
transaction protocol. We experienced that anticipating all possible behaviors
of Megastore-CGC is impossible. A similar observation was made by Google’s
Megastore team, which implemented a pseudo-random test framework, and state
that “the tests have found many surprising problems” [1]. Compared to such a
testing framework, Real-Time Maude model checking analyzes not only a set
of pseudo-random behaviors, but all possible behaviors from an initial system
configuration. Furthermore, we believe that Real-Time Maude provides a more
effective and low-overhead approach to testing than a real testing environment.

Several studies indicate that the test-driven development method significantly
improves the quality of the resulting product [12]. In this method, a suite of tests
for the planned features are written before development starts. This set of tests
is then used both to give the developer quick feedback during development, and
as a set of regression tests when new features are added. However, test-driven
development has traditionally been considered to be unfeasible when targeting
fault tolerance in complex concurrent systems due to the lack of tool support for
testing large number of different scenarios. Our experience from Megastore-CGC
is that with Real-Time Maude, a test-driven approach is possible also in such
systems, since many complex scenarios can be quickly tested by model checking.

To summarize, the contributions of this paper are the following:

1. Section 3 defines an extension of Megastore, called Megastore-CGC, that
provides consistency also for transactions accessing multiple entity groups.

Increasing Consistency in Multi-site Data Stores 161

2. Section 4 defines a formal model of Megastore-CGC in Real-Time Maude.
3. We use Real-Time Maude Monte Carlo simulations in Section 5 to show that

the performance of Megastore-CGC is on par with that of Megastore.
4. We show in Section 6 how Real-Time Maude LTL model checking can be

used to analyze the correctness of Megastore-CGC, including how such model
checking can analyze the important feature serializability property of dis-
tributed databases: any concurrent execution of a set of transactions should
produce results equivalent to a serial execution of the same transactions.

2 Preliminaries

Megastore. Megastore [1] is a replicated data store developed by Google. Data
are key-value pairs called entities. A transaction is a sequence of read and write
operations on entities, followed by a commit request. Entities are partitioned into
entity groups, and each entity group is replicated at different sites. A replicated
transaction log is maintained for each entity group. For transactions accessing a
single entity group, Megastore ensures atomicity and serializability (consistency)
by only allowing one transaction to update the log at any time.

Initially, all read operations in a transaction t are executed locally at a site
s, and t’s updates are buffered. Each site has a coordinator, which is always
informed about whether the local replica is up-to-date. If the local replica is not
up-to-date for an entity requested by t, a majority read is performed.

Let t read and write entities from entity group eg, and let lp be the current
log position in the replicated log of eg. When t requests commit, site s prepares
a log entry for eg containing t’s updates, and runs the following variant of the
Paxos consensus protocol [11] to assign this entry to log position lp+ 1:

1. Site s sends a proposal containing the log entry and the next leader (normally
s) to the current leader site l, which was elected during the previous commit.
If l accepts the entry, s sends the proposal to the other sites. If not, e.g., due
to a concurrent update of the same entity group, the transaction is aborted.

2. Site s then waits for acknowledge responses from all sites. If some sites fail
to acknowledge, s sends an invalidate message to these sites.

3. When each site has acknowledged either the proposal or the invalidate mes-
sage, s requests all sites to apply t’s updates. Each site replicating eg then
appends the chosen log entry for position lp + 1 to the local copy of the
transaction log for eg, and subsequently updates the local data store.

In the presence of failures, s may fail to achieve consensus. In this case another
site may propose itself as the leader, and starts at step (1). If multiple sites
propose log entries for the same log position, Paxos ensures that only one is
elected, and the others are aborted.

Real-Time Maude. Real-Time Maude [13] is a formal modeling language and
high-performance simulation and model checking tool for distributed real-time

162 J. Grov and P.C. Ölveczky

systems. The modeling formalism is expressive and intuitive, allowing developers
with limited formal methods experience to model complex real-time systems.

An algebraic equational specification (specifying sorts, subsorts, functions and
equations defining the functions) defines the data types in a “functional program-
ming style.” Labeled rewrite rules crl [l]: t => t′ if cond define local tran-
sitions from state t to state t′, and tick rewrite rules crl [l]: {t} => {t′} in

time Δ if cond advance time in the entire state t by Δ time units.
A declaration class C | att1 : s1, . . . , attn : sn declares a class C with

attributes att1 to attn of sorts s1 to sn. An object of class C is represented as a
term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort Oid,
is the object’s identifier, and where val1 to valn are the current values of the
attributes att1 to attn. A message is a term of sort Msg. The state is a term of
sort Configuration, and is a multiset of objects and messages. Multiset union
is denoted by an associative and commutative juxtaposition operator, so that
rewriting is multiset rewriting.

Real-Time Maude specifications are executable, and the tool provides a variety
of formal analysis methods. The timed rewriting command (tfrew t in time

<= timeLimit .) simulates one of the system behaviors by rewriting the initial
state t up to duration timeLimit .

Real-Time Maude’s linear temporal logic model checker analyzes whether each
behavior satisfies a temporal logic formula. State propositions are operators of
sort Prop, and their semantics is defined by equations of the form

eq statePattern |= prop = b and ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all states t where t |=
prop evaluates to true. A temporal logic formula is constructed by state propo-
sitions and temporal logic operators such as True, False, ~ (negation), /\, \/,
-> (implication), [] (“always”), <> (“eventually”), and U (“until”). The model
checking command (mc t |=u formula .) checks whether the temporal logic
formula formula holds in all behaviors starting from the initial state t.

3 Megastore-CGC

3.1 Motivation

In Megastore, the strategy for partitioning entities into entity groups depends
both on application access patterns and requirements for consistency. For an
application requiring consistent access to two entities A and B, A and B must
belong to the same entity group. Large entity groups are therefore desired to
ensure consistency for many different transactions types. However, since only
one concurrent update is allowed per entity group, the system’s ability to serve
multiple simultaneous users depends on entity groups being relatively small. The
following example illustrates that it can be hard (or impossible) to partition the
entities such that the required levels of consistency and concurrency are achieved.

Increasing Consistency in Multi-site Data Stores 163

Example 1. Consider a hospital with thousands of employees. To enable efficient
allocation of personnel to tasks (both planned and emergencies), the hospital
wants to use a cloud infrastructure for a shared scheduling system used to assign
each employee a status throughout the day. The system should maintain entities
〈〈employee, time slot〉, status〉, where each employee has a set of capabilities
(heart surgery, anesthesia, etc), and where status is booked, available, or off-
duty. The scheduling system must satisfy the following constraints:

1. An employee can be booked for at most 12 hours during a 24-hour period.
2. Emergency preparedness requires having a certain number of available em-

ployees with a given capability in each time slot. There should, for example,
always be an available heart surgeon to deal with emergencies.

Transactions booking personnel therefore need to inspect multiple entities before
performing updates. For Constraint 1, other records for the same employee must
be inspected. For Constraint 2, records of other employees must be inspected.

The question is how to group the records into entity groups. Grouping all enti-
ties into the same entity group would make simultaneous assignments (by differ-
ent operators) impossible, which is unacceptable. Grouping all entities belonging
to one employee into the same entity group allows us to enforce Constraint 1 but
not Constraint 2: Let H1 and H2 be the only two available heart surgeons at
time slot τ , and let two concurrent transactions Book-H1 and Book-H2 attempt
to book H1 and H2, respectively, at time τ . If H1 and H2 belong to different
entity groups, Megastore cannot ensure consistency across H1 and H2. Then,
both Book-H1 and Book-H2 could see the other heart surgeon as available,
leading to the violation of Constraint 2.

3.2 Megastore-CGC

In Megastore, the data is a set E of entities replicated across a set S of sites.
E is partitioned into a set EG = {eg1, . . . , egn} of non-empty entity groups. A
function R : S → P(EG) assigns to a site the entity groups it replicates.

In Megastore-CGC, the set of entity groups is partitioned into a set OC of
ordering classes. A number of entity groups should belong to the same ordering
class if consistent transactions across these entity groups are required. Further-
more, for each ordering class, there must be at least one site replicating all entity
groups in the ordering class (∀oc ∈ OC ∃s ∈ S oc ⊆ R(s)). One of the sites
replicating all the entity groups in an ordering class oc is the ordering site of oc.

A key observation is that, in Megastore, a site replicating a set of entity groups
participates in all updates on these entity groups, and should therefore be able
to maintain an ordering on these updates. The idea behind Megastore-CGC is
that with this ordering, one site, the ordering site, can validate transactions.

Example 2. The status of heart surgeon h at time slot τ is represented by the
entity hτ , which is part of the entity group eh representing all time slots of h.

Let t be a transaction, initiated at site st, that wants to book hτ . Since there
must always be at least one heart surgeon available, t also reads the status of the

164 J. Grov and P.C. Ölveczky

other heart surgeons at time τ . These entities belong to different entity groups.
t completes by changing the availability status of hτ to booked, if possible.

Using Megastore, Constraint 2 could be violated if some concurrent transac-
tion t′, executing at site st′ , attempts to book the only other available heart
surgeon h′ at time slot τ :

1. t reads the value of hτ and h′
τ at st.

2. t′ reads the value of hτ and h′
τ at st′ .

3. t books hτ . This update is distributed by st and applied at all sites replicating
hτ , including st′ .

4. t′ books h′
τ . This update is distributed by st′ and applied at all replicating

sites, including st.

This execution, which books both heart surgeons and leaves no heart surgeon
for emergencies, is not serializable. Megastore-CGC can ensure also Constraint
2 if we group the entity groups for all employees with a given expertise into
the same ordering class: The ordering site of the ordering class HS of all heart
surgeons orders t and t′, and then validates t and t′ by checking whether all read
operations have seen the most recent updates (according to the given order). In
the above scenario, either t or t′ would fail this test and be aborted.

Since Megastore-CGC makes explicit and uses the implicit ordering of up-
dates during Megastore commits, Megastore-CGC is essentially piggybacked
onto Megastore’s commit protocol, which has the following advantages:

– Performance on par with Megastore, as Megastore-CGC does not introduce
additional coordination messages or blocking.

– For transactions requiring the consistency level provided by Megastore, fault
tolerance is identical to that of Megastore.

3.3 Megastore-CGC Without Error Handling

This section explains the behavior of Megastore-CGC without its fault-tolerance
features; i.e., assuming that messages are not lost and that sites never fail.

Megastore-CGC maintains the following additional information:

– A mapping os : OC → S, which assigns to each ordering class oc its ordering
site os(oc) such that oc ⊆ R(os(oc)) for each ordering class oc ∈ OC .

– A function ol : OC → Orderlist , assigning to each ordering class its ordering
list. Each entry in the ordering list for oc contains the updates on entity
groups in oc, together with the updating transaction.

We can select any Megastore site replicating all entity groups in an ordering class
oc as the ordering site for oc. The ordering list ol(oc) is replicated, with each site
maintaining a projection of ol(oc) of updates to locally replicated entity groups.

The mapping os is stored as a special entity group egos replicated at all sites.
This ensures a consistent view among all participating sites, since the ordering
site of an ordering class oc may change when an ordering site fails.

Increasing Consistency in Multi-site Data Stores 165

When a transaction t accessing entity group(s) in ordering class oc commits,
an entry for t is appended to the list ol(oc) by os(oc). This represents the
ordering of t in oc, and t can then be validated: its execution is valid if and only
if all read operations have seen the most recent update according to ol(oc).

Let t be a transaction with ordering class oc. Megastore-CGC then extends
Megastore’s commit protocol (see Section 2) as follows:

– In Step 1, t is ordered once the ordering site os(oc) receives t’s updates.
After ordering, os(oc) validates t, using the read set of t as input (the read
set is included with the log entry proposal for t, and contains the id of all
entities read by t, together with the log position of the version read by t).

– If validation at os(oc) is successful, the updated order is included in the
apply-request of Step 3.

– If validation is not successful, the apply-step is replaced by a rollback-step,
requesting all participating sites to abort t.

A more detailed description of these steps is given in Appendix A.

3.4 Failure Handling in Megastore-CGC

The transaction ordering must be consistent even when the ordering site fails
and/or messages containing ordering information are lost. Our key ideas are:

– Transactions not requiring the additional consistency features provided by
Megastore-CGC are treated as in Megastore: they are committed regardless
of whether Megastore-CGC’s validation features are available.

– A new ordering site is chosen if the current ordering site may be unavailable.

The commit protocol of a transaction t may be completed without t being
ordered (and validated) by the ordering site. This can happen for several reasons:

1. The ordering site is down (or recovering from failure).
2. The ordering site did not receive the message containing t’s updates.
3. The acknowledgment from the ordering site was lost.
4. The site executing t crashed after sending t’s updates, and some other site

completed the commit protocol for t (this is a feature provided by Paxos).

In this scenario, the apply message for t in Step 3 is sent without the ordering
information. The next step depends on the validation requirements of t:

– If t only reads entities from one entity group, recipients of the message
register t as awaiting order before applying t’s updates.

– If t accesses multiple entity groups, t cannot be safely committed, and its
updates will be replaced by an empty list of operations.

If the ordering site fails, Megastore-CGC provides a method to reinstate or-
dering if there is another site replicating all entity groups of the ordering class.
The steps of this ordering site failover are:

166 J. Grov and P.C. Ölveczky

– Let t be a transaction with ordering class oc. If the ordering site os(oc) fails
to order t during t’s commit, st (the original site executing t) initiates an
ordering site failover for ordering class oc.

– st selects the new ordering site s′ from the sites replicating all entity groups
in oc. If no such site (except os(oc)) exists, the failover procedure is canceled.

– If a new ordering site is available, st prepares an update to the special entity
group egos , which contains the current ordering site for each ordering class.

– Once this update is accepted by a majority of sites, the new ordering site s′

is elected. The mapping os is updated to os [oc 	→ s′].
– Once elected, s′ orders all transactions registered as awaiting order. This

ordering is included in the apply message for the next transaction t′.

4 Formalizing Megastore-CGC

This section presents our formal Real-Time Maude model of Megastore-CGC,
which extends and modifies our model of Megastore in [9]. The entire executable
formal specification is available at http://folk.uio.no/jongr/mcgc/.

We model Megastore-CGC in an object-oriented way, where the state consists
of a multiset of site objects and messages traveling between them. Each site is
modeled as an object instance of the following class:

class Site | entityGroups : Configuration, localTransactions : Configuration,

coordinator : EntGroupLogPosPairSet, egOrderings : OrderClassUpdates,

awaitingOrder : EntGroupUpdateList .

The attribute entityGroups contains one EntityGroup object for each entity group
replicated at the site; localTransactions contains one Transaction object for each
active transaction originating at the site; coordinator denotes the local coordi-
nator state for each entity group; egOrderings contains a list of entries (t, eg, lp)
for each ordering class oc, representing ol(oc), where lp is the log position of t’s
update in the transaction log for entity group eg; and awaitingOrder is a set of
entries (oc, t, eg, lp), used during failures for transactions requiring ordering later.

Each site’s copy of an entity group is modeled as an object of the class

class EntityGroup | entitiesState : EntitySet, transactionLog : LogEntryList,

replicas : EntityGroupReplicaSet, proposals : PaxosProposalSet,

pendingWrites : PendingWriteList .

entitiesState stores the local version of each entity. transactionLog denotes the
local copy of the replicated transaction log. A log entry (t lp s ol) contains the
identity t of the originating transaction, the log position lp, the leader site s for
the next log entry, and the list ol of write operations executed by t. replicas
denotes the set of sites replicating this entity group; proposals denotes the local
state in ongoing Paxos processes involving this entity group; and pendingWrites

maintains a list of write operations waiting to be applied to the entitiesState.
A transaction request is a list of current read operations cr(e) and write

operations w(e,v). Executing transactions are modeled as objects of the class

http://folk.uio.no/jongr/mcgc/

Increasing Consistency in Multi-site Data Stores 167

class Transaction | operations : OperationList, status : TransStatus,

reads : EntitySet, readState : ReadStateSet,

writes : OperationList, paxosState : PaxosStateSet .

The attribute operations contains the remaining operations in the transaction;
reads stores the values fetched during read operations; write operations are
buffered in writes; status holds the current transaction status; and readState

and paxosState store transient data during execution.
We assume that the sites are connected by a wide-area network, and we there-

fore do not assume FIFO delivery between the same pair of nodes.
The dynamic behavior of Megastore-CGC is defined by 72 rewrite rules.

5 Performance Estimation

This section shows how randomized Real-Time Maude simulations can estimate
the following performance parameters of Megastore-CGC:

– Average time, per committed transaction, between the request arrives and
the response is sent.

– Number of commits, conflict aborts, and validation aborts at each site.

We compare the performance of (our models of) Megastore-CGC and Megas-
tore. With the right system parameters, Real-Time Maude simulations should
provide realistic performance estimates. For example, it is shown in [14] that
Real-Time Maude simulations of wireless sensor networks give as good perfor-
mance estimates as dedicated simulation tools. Our system parameters are:
– Frequency and distribution of transaction requests.
– Number of sites.
– Number and size of entity groups and ordering classes.
– Network delay distribution between each pair of sites.
– Network and site failure rates.
– Initial values of the seeds for the random function.

We can easily change these parameters by modifying the initial state in Fig. 1.
We use a scenario with three sites, four entities, two entity groups, one ordering
class (containing both entity groups), and a set of transaction types reading and
writing these entity groups. A local read operation requires 10 ms to complete,
according to real-world measurements in [1]. After commit, we assume a delay
of 100 ms for each write operation before the new value is available. Two sites,
Site 1 and Site 2, are located in the same area, with the third site (RSite) at a
more remote location. The probability distribution of the network delays is:

30% 30% 30% 10%

Site 1 ↔ Site 2 10 15 20 50
Site 1 ↔ RSite 30 35 40 100
Site 2 ↔ RSite 30 35 40 100

Transaction requests are generated randomly at each site according to the
following frequency distribution (where “Book H1A” is a transaction that also
reads the entity H2A (“heart surgeon H2 in the afternoon”) before possibly
booking (heart surgeon) H1 in the afternoon):

168 J. Grov and P.C. Ölveczky

eq initState(N) =

{< RSite : Site |

awaitingOrder : noAwaitingOrderSet, coordinator : ..., egOrderings : ...,

entityGroups :

(< H1 : EntityGroup | pendingWrites : emptyPWList, proposals : emptyProposalSet,

replicas : ..., entitiesState : ..., transactionLog : ... >

< H2 : EntityGroup | ... >

< OrderSites : EntityGroup | ... >), --- special entity group representing the map OS

localTransactions : none, seqGen : 0 >

< Site1 : Site | ... >

< Site2 : Site | ... >

< NWRK : NetworkDelays |

connections : (conn(Site1 <-> RSite,< 1 ; 30 ; 30 > ... < 91 ; 100 ; 100 >, true) ;

conn(RSite <-> Site2, ... , true) ; conn(Site1 <-> Site2, ... , true)) >

< rnd : Random | seed : N >

< stats(Site1): SiteStatistics | avgLatency : 0, commits : 0,

conflictAborts : 0, validationAborts : 0, ... >

< stats(RSite): SiteStatistics | ... > < stats(Site2): SiteStatistics | ... >

< transGen(RSite): PoissonTransGen | idCounter : 1, status : waiting(10),

workload : < 1 ; 25 ; update-H1-M > ... < 76 ; 100 ; book-H1-A > >

< transGen(Site1): PoissonTransGen | ... > < transGen(Site2): PoissonTransGen | ... > >}

Fig. 1. An initial state in our simulations (with parts of the term replaced by ‘...’).

Site 1 Site 2 Remote site

Update H1M 50% Update H1M 25% Update H1M 25%
Update H1A 50% Update H1A 25% Update H1A 25%

Update H1M 25% Update H2A 25%
Book H2A 25% Book H1A 25%

We add “record” objects that record events during the simulation, using tech-
niques in [14]. The initial state initState, shown in Figure 1, is then a multiset
containing: one Site object for each site; one NetworkDelays object containing
the network delay distributions; one Random object with the seed used to ran-
domly select a network delay when a message is sent; one SiteStatistics object
for each site recording statistics during simulation; and a PoissonTransGen ob-
ject for each site, which generates transactions randomly according to the given
distribution.

We simulate the system up to 1,000,000 ms using the command

(tfrew initState(10) in time <= 1000000 .)

which returns the term (with parts of the term are replaced by ‘...’)

{< stats(RSite): SiteStatistics | avgLatency : 94579/631, commitCount : 631,

conflictAborts : 171, validationAborts : 10, ... > ... }

in 145,957ms cpu time on a Pentium Intel Core i7 2,6 GHz.
We have also run these experiments on our model of Megastore, and show the

result when the average (overall) transaction rate is 2.5 TPS (transactions per
second). The following table shows the number of transactions successfully com-
mitted (Comm.), and aborted due to conflict (Abs.), and the average transaction
latency (Avg.lat). For Megastore-CGC, we also show the number of transactions
aborted due to validation failures (Val.abs), since the transactions book-H1-A and
book-H2-A access multiple entity groups and could see an inconsistent read set.

Increasing Consistency in Multi-site Data Stores 169

Megastore Megastore-CGC

Comm. Abs. Avg.lat Comm. Abs. Val.abs. Avg.lat

Site 1 652 152 126 660 144 0 123
Site 2 704 100 118 674 115 15 118
RSite 640 172 151 631 171 10 150

We have also compared the performance on “Megastore-friendly” transactions
where each transaction only accesses a single entity group. The performance of
Megastore and Megastore-CGC is virtually the same in this experiment:

Megastore Megastore-CGC

Comm. Abs. Avg.lat Comm. Abs. Val.abs. Avg.lat

Site 1 684 120 122 679 125 0 120
RSite 674 138 132 677 135 0 130
Site 2 693 111 110 691 113 0 113

We also used simulations during the development of Megastore-CGC to esti-
mate the performance of different design choices. For example, our experiments
showed that aggressive failure detection may increase the number of validation
aborts, since ordering may be quicker re-established in case of small transient
errors (such as message losses) than if a failover is required.

6 Model Checking Verification

We use model checking to explore all possible behaviors of Megastore-CGC that
can happen nondeterministically from a given initial system configuration. In
addition to verifying desired properties, model checking is invaluable during the
design process, and helped us discover many subtle bugs in (earlier versions of)
Megastore-CGC that were not uncovered during extensive simulation.

We analyze the original nondeterministic model (not the randomized one used
for performance estimation). For the model checking analysis to terminate, we
analyze scenarios with a limited number of transactions, and restrict the message
delays, transaction start times, site and communication failures, etc.

With a finite number of transactions, the system should satisfy the property
that in all states from some point on:

1. All transactions have finished their execution.
2. All replicas of an entity have the same value or the coordinator of diverging

site(s) is invalidated.
3. All logs for an entity group contain the same entries, unless a coordinator is

invalidated.
4. The execution was serializable; i.e., it gives the same result as some execution

in which the transactions are executed one after the other.

This property can be formalized as the following temporal logic formula Φ:

<> [] (allTransFinished /\ entityGroupsEqualOrInvalid

/\ transLogsEqualOrInvalid /\ isSerializable)

170 J. Grov and P.C. Ölveczky

allTransFinished is a state proposition that is true in a state if all transactions
have finished; entityGroupsEqualOrInvalid is a state proposition that is true

in all states where all replicas of each entity have the same value, unless the
coordinator has been invalidated; and transLogsEqualOrInvalid is true when all
transitions logs for each entity group are equal (unless a coordinator has been
invalidated). The last of these propositions is defined as follows:

op transLogsEqualOrInvalid : -> Prop [ctor] .

ceq {REST

< S1 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOG1 > ... >

< S2 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | transactionLog : LOG2 > ... >}

|= transLogsEqual = false if LOG1 =/= LOG2 .

eq {SYSTEM} |= transLogsEqualOrInvalid = true [owise] .

We first characterize the states where transLogsEqualOrInvalid does not hold,
namely, the states with two sites with valid coordinators and where some entity
group EG1 has different values. The last equation, with the owise (“otherwise”)
attribute, defines transLogsEqualOrInvalid to be true in all other states.

To analyze serializability, we use the technique in [9]. The serialization graph
for an execution of a set of committed transactions is a directed graph where
each transaction is represented by a node, and where there is an edge from a
node t1 to another node t2 iff the transaction t1 has executed an operation on
entity e occurs before transaction t2 executed an operation on the same entity,
and at least one of the operations was a write operation. An execution of multiple
transactions is serializable if and only if its serialization graph is acyclic [20].

In a multi-versioned replicated data store like Megastore-CGC, we need a
version order << on the written entity values to decide the before relation when
constructing the serialization graph. For example: a write operation w(e,v) which
creates a version k of entity e occurs before a current read cr(e) iff cr(e) reads
a version l where k << l according to the selected version order. Since every
committed transaction is assigned a unique log position for each entity group
it updates, we use log positions for the version order. This means that if, for
example, ti reads from log position lp and tk commits an update at log position
lp′, then ti → tk in the serialization graph iff lp < lp′.

When an update transaction ti commits, it produces a message containing:

– the log position and value of each entity it has read; and
– the set of entities written, all of them have the log position assigned to ti.

We add a TransactionHistory object containing the current serialization graph.
When a transaction commits, this object reads the above message and updates
its serialization graph. The proposition isSerializable is then defined

op isSerializable : -> Prop [ctor] .

eq {< th : TransactionHistory | graph : GRAPH > REST}

|= isSerializable = not hasCycle(GRAPH) .

We have model checked the temporal logic formula Φ with a number of dif-
ferent system parameters. For example, we have executed the command without

Increasing Consistency in Multi-site Data Stores 171

site and communication failures, where the message delay is either 30 or 80, with
5 transactions, in the following setup:

Site Transaction Operations Start time

Site 1 update-H1-A read H1-A; write(H1-A, Avail1) 150
RSite update-H2-A read H2-A; write(H2-A, Avail2) 150
Site 2 update-H2-A read H2-A; write(H2-A, Avail3) 150
RSite book-H2-A read H1-A; read H2-A; write(H2-A, Booked1) {180, 210}
Site 2 book-H1-A read H2-A; read H1-A; write(H1-A, Booked2) {180, 210}
We then use the following command to check whether each behavior satisfies

the desired properties in Megastore-CGC:

(mc init1 |=u Φ .)

which returned true in 124 seconds cpu time. The number of different states
reachable from the initial state is 108,279.

Performing the exact same model checking in Megastore returns the following
counterexample, in which there is both an edge from book-H1-A to book-H2-A and
from book-H2-A to book-H1-A in the serialization graph:

Result ModelCheckResult : counterexample({initTransactions

...

< th : TransactionHistory | graph : < book-H2-A ; book-H1-A > ; < book-H1-A ; book-H2-A > ; ... >})

Real-Time Maude outputs a behavior invalidating Φ when model checking fails;
this allowed us to easily identify the (often subtle) issues causing problems.

We have also successfully model checked Megastore-CGC in a number of other
scenarios, including:

– Three transactions, two possible start times, one site failure and fixed mes-
sage delay (1,874,946 reachable states, model checked in 6,311 seconds).

– Three transactions, two possible start times, fixed message delay and one
message failure (265,410 reachable states, model checked in 858 seconds).

7 Related Work

Data stores such as Amazon’s Dynamo [7], Google’s BigTable [3], and Cassan-
dra [10] are widely used due to their combination of high availability and scala-
bility. However, given their lack of transaction features, several data stores with
(limited) transaction support have emerged to address the need for strong con-
sistency in many real-world applications. In addition to Megastore, ElasTraS [6],
Spinnaker [16], Calvin [19], and Microsoft’s Azure [2] achieve high availability
and scalability by partitioning the data, and provide consistency within each
partition. Both Megastore, Spinnaker, and Calvin use Paxos to distribute up-
dates among sites. We are not aware of any generic method for transactional
consistency across partitions besides Megastore-CGC. Google’s Spanner [5] pro-
vides both high availability, scalability, and transactional consistency across par-
titions, but is less generic since it demands a complex infrastructure involving
GPS hardware and atomic clocks.

172 J. Grov and P.C. Ölveczky

We have not seen any other work on formalizing and verifying transactional
data stores using formal verification tools. In [15] the authors assert the need
for formal analysis of replication and concurrency control in transactional cloud
data stores, and they analyze a prose-and-pseudo-code description of a Paxos-
based concurrency control protocol. In contrast to our work, this description is
not amenable to model checking and simulation.

A prerequisite for extending Megastore is to have detailed knowledge of it,
which is a challenging task, since Megastore is an internal system at Google
that is publicly described only in an informal way in [1]. In [9] we therefore de-
velop a fairly detailed Real-Time Maude model of Megastore. The value of using
Maude [4] (the “untimed” version of Real-Time Maude) for formally analyzing
other cloud systems is demonstrated in [17], where the authors point out possible
bottlenecks in a näıve implementation of ZooKeeper for key distribution, and in
[8], where the authors analyze denial-of-service prevention mechanisms.

8 Concluding Remarks

We have used Real-Time Maude to develop an extension of Megastore, denoted
Megastore-CGC, which provides consistency also for transactions that access
multiple entity groups.

The main idea behind Megastore-CGC is that in Megastore, sites replicating
multiple entity groups implicitly observe an ordering of updates across this set of
partitions. We make this ordering explicit by defining ordering sites. An impor-
tant advantage of Megastore-CGC is that ordering and validation is piggybacked
onto the existing message interactions of Megastore’s commit protocol, allowing
Megastore-CGC to provide these features without introducing new messages or
waiting. This is also reflected in our Monte Carlo simulations, which indicate that
the performance of Megastore-CGC is virtually the same as that of Megastore.

The Megastore-CGC approachmight be applicable to other Paxos-based trans-
actional data stores such as Spinnaker [16] and Calvin [19]. However, one key
assumption in Megastore is that each site has a coordinator which knows whether
the local site has received all updates. Without this feature, changing the order-
ing site (in case of failure) becomes significantly more complex.

Designing and validating a sophisticated protocol like Megastore-CGC is very
challenging. Real-Time Maude’s intuitive and expressive formalism allowed a
domain expert (the first author) to define both a precise, formal description and
an executable prototype in a single artifact. Simulating and model checking this
prototype automatically provided quick feedback about both the performance
and the correctness of different design choices, even for very complex scenarios.
Model checking was especially helpful, both to verify properties and to find subtle
“corner case” design errors that were not found during extensive simulations.

References

1. Baker, J., et al.: Megastore: Providing scalable, highly available storage for inter-
active services. In: CIDR (2011), http://www.cidrdb.org

http://www.cidrdb.org

Increasing Consistency in Multi-site Data Stores 173

2. Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme scale with full SQL language
support in Microsoft SQL Azure. In: SIGMOD 2010, pp. 1021–1024. ACM (2010)

3. Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI
2012. USENIX (2012)

6. Das, S., Agrawal, D., Abbadi, A.E.: ElasTraS: An elastic transactional data store
in the cloud. In: USENIX HotCloud. USENIX (2009)

7. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev. 41, 205–220 (2007)

8. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J., Zis-
man, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)

9. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore in
Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Futatsugi Festschrift.
LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014)

10. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

11. Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
12. Munir, H., Moayyed, M., Petersen, K.: Considering rigor and relevance when eval-

uating test driven development: A systematic review. Inform. Softw. Techn. (2014)
13. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)
14. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and

model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

15. Patterson, S., et al.: Serializability, not serial: concurrency control and availability
in multi-datacenter datastores. Proc. VLDB 5(11), 1459–1470 (2012)

16. Rao, J., Shekita, E.J., Tata, S.: Using Paxos to build a scalable, consistent, and
highly available datastore. Proc. VLDB 4(4), 243–254 (2011)

17. Skeirik, S., Bobba, R.B., Meseguer, J.: Formal analysis of fault-tolerant group key
management using ZooKeeper. In: Proc. CCGRID. IEEE (2013)

18. Stonebraker, M., Cattell, R.: 10 rules for scalable performance in ‘simple operation’
datastores. Commun. ACM 54(6), 72–80 (2011)

19. Thomson, A., et al.: Calvin: Fast distributed transactions for partitioned database
systems. In: Proc. SIGMOD 2012. ACM (2012),
http://doi.acm.org/10.1145/2213836.2213838

20. Weikum, G., Vossen, G.: Concurrency Control and Recovery in Database Systems.
Morgan Kaufman (2001)

A Transaction Commit in Megastore-CGC

Let t be a transaction executing at site st, reading a set of entity groups EG and
updating an entity group eg ∈ EG. All entity groups in EG belong to ordering
class oc. The table below summarizes the steps of committing t in Megastore-
CGC, and distinguishes the features of Megastore from the features of our CGC
extension. In the table, Reg denotes all sites replicating eg.

http://doi.acm.org/10.1145/2213836.2213838

174 J. Grov and P.C. Ölveczky

Step Site(s) Megastore CGC extension
1a st Send an acceptLeader re-

quest to the leader sl for the
current log position.

If sl = os(oc), include t’s read set and request
ordering and validation from sl.

1b sl Receive acceptLeader re-
quest. If there are no con-
flicting updates within eg,
send accept to st. Other-
wise, request st to abort t.

If sl = os(oc) and there are no conflicting up-
dates in eg, order and validate t by appending t’s
updates to ol(oc) and then verifying that t has
seen the most recent update for each member of
EG. If validation is successful, ol(oc) is included
in the accept message. If validation is unsuccess-
ful, request st to abort t.

1c st Receive response from sl.
If sl requests abort, t is
aborted. Otherwise, multi-
cast an accept request for t
to all sites replicating entity
group eg, except st and sl.

If sl �= os(oc) and st = os(oc), order and validate
t. If validation is successful, st requests accept
from the other sites. Otherwise, t is aborted.
If sl �= os(oc) and st �= os(oc): include t’s read
set in the accept request for os(oc).

2 Reg \
{os(oc),
st, sl}

Receive and store the ac-
cept request, send acknowl-
edgment to st.

2’ os(oc)
if os(oc) �= st
∧ os(oc) �= sl

Receive and store the ac-
cept request, send acknowl-
edgment to st.

Order and validate t. If validation is successful,
include ol(oc) in the acknowledgment message. If
validation is unsuccessful, the acknowledgment is
sent without including the ordering.

3 st Multicast apply message
containing t’s updates.

If t was successfully ordered and validated, in-
clude ol(oc) in this message. Otherwise, replace
t’s updates with an empty list of operations (ef-
fectively aborting t).

3’ Reg Apply t’s updates to local
transaction log and repli-
cated entity store.

If the apply message contains ol(oc), update the
local copy of ol(oc).

Some further comments on the CGC extension:

– t is ordered when the ordering site os(oc) accepts t. If os(oc) is the leader
for this log position, this occurs at Step 1b. Otherwise, it occurs at Step 2’.

– After ordering, os(oc) validates t, using the read set of t as input. The read
set is included in the accept-request for os(oc), and contains the id of all
entities read by t together with the version seen (represented by the log
position). The validation procedure ensures that for any pair of transactions
in a read-write conflict (i.e., one is reading and the other is writing the same
entity), one of the transactions is aborted unless the conflicting operations
occur according to the order ol(oc). Assuming transactions access entity
groups within one ordering class only, this is sufficient to verify that the
serialization graph [20] for any schedule is acyclic.1

– If validation at os(oc) is successful, site st distributes the updated order to
all sites replicating eg as part of the apply message for t. If validation is not
successful, the apply-step is replaced by an empty operation list, effectively
aborting t (Step 3).

1 Megastore is a multi-version data store where write-write conflicts do not occur.

	Increasing Consistency in Multi-site Data Stores:
Megastore-CGC and Its Formal Analysis
	1 Introduction
	2 Preliminaries
	3 Megastore-CGC
	3.1 Motivation
	3.2 Megastore-CGC
	3.3 Megastore-CGC Without Error Handling
	3.4 Failure Handling in Megastore-CGC

	4 Formalizing Megastore-CGC
	5 Performance Estimation
	6 Model Checking Verification
	7 Related Work
	8 Concluding Remarks
	References
	A Transaction Commit in Megastore-CGC

