
Targeted Test Input Generation
Using Symbolic–Concrete Backward Execution

[Extended Abstract]
∗

Peter Dinges
University of Illinois

Urbana–Champaign, USA
pdinges@acm.org

Gul Agha
University of Illinois

Urbana–Champaign, USA
agha@illinois.edu

ABSTRACT
Knowing inputs that cover a specific branch or statement
in a program is useful for debugging and regression testing.
Symbolic backward execution (SBE) is a natural approach
to find such targeted inputs. However, SBE struggles with
complicated arithmetic, external method calls, and data-
dependent loops that occur in many real-world programs.
We propose symcretic execution, a novel combination of
SBE and concrete forward execution that can efficiently find
targeted inputs despite these challenges. An evaluation of
our approach on a range of test cases shows that symcretic
execution finds inputs in more cases than concolic testing
tools while exploring fewer path segments. Integration of
our approach will allow test generation tools to fill coverage
gaps and static bug detectors to verify candidate bugs with
concrete test cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution

Keywords
Concolic; Symcretic; Backward Execution; Goal-Directed

1. INTRODUCTION
The distribution of bugs in real-world programs tends to be

highly non-uniform [9, 1]. Thus a test suite that covers most
of a program may nevertheless fail to cover the parts that
contain many bugs. Generally, the goal of test generation
tools is to maximize the overall coverage [12, 20, 21, 18,
10]. However, it has been argued that this yields test inputs
that are often of limited use for developers [11]. We take
an alternative approach: our goal is to automatically find

∗The full version of this paper is available as UIUC Technical
Report, September 2014. http://ideals.illinois.edu

(C) Peter Dinges and Gul Agha 2014. This is the authors’ version of the work. It
is posted here for your personal use. Not for redistribution. The definitive version
was published in the proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2014), September 15–19, 2014, Västerås,
Sweden.
http://dx.doi.org/10.1145/2642937.2642951

targeted test inputs that cover a specific branch or statement
in the code. Developers can then use such targeted inputs,
for example, to triage a reported bug [3, 24], or to verify that
a suspicious instruction pattern is an actual problem, or to
add a test case to cover a specific code change [23].

A natural approach for finding targeted inputs is to use
symbolic backward execution (SBE) [2, 3, 4]. SBE explores
a program in the ‘reverse’ direction of normal (forward)
execution. Starting from a specific target statement, SBE
continues until it reaches an entry point—thus considering
only those execution paths that can reach the target. By
collecting a set of constraints (the path condition) during this
exploration, SBE builds a symbolic characterization of the
execution path it explored. A path condition is similar to a
weakest precondition; solving it yields inputs that drive the
program down the characterized path to cover the target.

Unfortunately, symbolic backward execution poses some
challenges:

(1) Because path conditions may contain arbitrary integer
constraints, they may be undecidable, or solving them
may be computationally infeasible. In this case, when
asked to check the satisfiability of a path condition, a
decision procedure may reply unknown.

(2) Symbolic decision procedures cannot reason about exter-
nal methods such as native methods in Java.

(3) Data-dependent loops can require an arbitrary number
of iterations to find a satisfiable path condition, leading
to an unbounded search space.

Following the general idea of concolic execution [12, 20],
we show how to combine symbolic backward execution with
concrete execution to efficiently find targeted inputs despite
these challenges. Our approach, called symcretic execution,
operates in two phases:

Phase I. Symbolic backward execution is used to find a
feasible execution path from the given target to any of
the program’s entry points. Unlike prior approaches [3],
symcretic execution ‘skips’ over constraints that are
problematic for the symbolic decision procedure and
defers their solution until the second phase.

Phase II. Concrete forward execution begins when the sym-
bolic backward execution reaches an entry point. Ex-
ecuting a trace of the program along the discovered
path, this phase uses heuristic search to find inputs that
satisfy the constraints that were skipped in Phase I.

http://ideals.illinois.edu
http://dx.doi.org/10.1145/2642937.2642951

1 public void challenges(int x, double u) {
2 int res = 0;
3 int i = 0;
4 while (i < x) {
5 int tmp = i % 2;
6 if (tmp == 0) {
7 res = res − 1;
8 } else {
9 res = res + 17;

10 }
11 i++;
12 }
13 if (res == 8192) { // Error condition 1
14 if (Math.sin(u) > 0) { // Error condition 2
15 throw new AssertionError();
16 } else ... // Long and deep computation
17 } else ... // Long and deep computation
18 }

Figure 1: Example program whose data-dependent
loop (line 4), non-linear integer arithmetic (line 5),
and call to an external method (line 14) make it hard
for symbolic execution to find inputs that trigger the
exception in line 15.

The integration of concrete execution allows symcretic
execution to solve a range of arithmetic constraints that
are too hard for symbolic decision procedures and enables
the effective handling of external methods. Moreover, if a
loop along a path requires too many symbolic traversals,
symcretic execution treats the loop as call to an external
method—thus delegating the problem of finding the right
number of iterations to the cheaper concrete phase.

This paper contains the following research contributions:

• It describes the symcretic execution algorithm for find-
ing targeted program inputs. To the best of our knowl-
edge, symcretic execution is the first algorithm to use
concrete execution to mitigate undecidable or infeasible
constraints, external method calls, and data-dependent
loops in symbolic backward execution.

• We compare symcretic execution with related tech-
niques (section 4) and evaluate an implementation of
our algorithm on a corpus of small programs (section 5).
We show that our approach is feasible and more efficient
than concolic execution for targeted input generation.

2. MOTIVATION
Suppose that during a code review and cleanup, we discover

that the test suite fails to throw the exception on line 15
of the program shown in Figure 1. To add a test case that
covers this line, we have to find inputs for an entry point of
the program that lead to the execution of this line. However,
manually deriving such targeted inputs is tedious and can be
complicated. For example, the challenges method in Figure 1
must be called with the input x = 1024 to satisfy the first
error condition, res == 8192, on line 13.

Instead of manual derivation, automated test generation
techniques can be used to find targeted inputs. One of
the strongest techniques is concrete–symbolic (concolic1)
execution [12, 20]. Concolic execution explores a program by
running it on concrete input values, for example x = 0 and

1Concolic execution is also known as Directed Automated
Random Testing and Dynamic Symbolic Execution.

u = 1.0, and at the same time using symbolic execution to
collect the constraints of the followed program path. This
path condition characterizes the set of all concrete inputs
that drive the program down the followed path. To explore
another path in the program, concolic execution derives a
new set of concrete inputs by negating one of the constraints
and solving the derived path condition. If the path condition
cannot be solved, concolic execution uses concrete execution
to improve coverage while sacrificing completeness.

Targeted Input Generation
The goal of concolic execution and other automated test
generation techniques is not to cover a specific target but
to achieve high overall coverage. These techniques try to
explore as much of a given program as possible to discover a
bug, or to generate a test suite that is as complete as possible.
In contrast, our objective is similar to that of SBE [2, 3, 4]:
instead of covering as much as possible, we are interested in
covering specific, relevant targets in a program. Any part of
a program that does not contribute to this goal (for example
lines 16 and 17 in Figure 1) is irrelevant; exploring it wastes
resources.

SBE starts at the target and explores the program in the
opposite direction of normal (forward) execution until it
reaches an entry point (e.g., a public method). During the
exploration, it maintains the path condition of the followed
path. After reaching an entry point, it solves the path condi-
tion to obtain concrete inputs that lead to the execution of
the target. For example, if the target is line 7 in Figure 1, the
execution starts on this line and steps backwards, collecting
the constraint tmp = 0. Moving further towards the top, it
constructs the path condition

tmp = 0 ∧ tmp = i mod 2 ∧ i < x ∧ i = 0 ∧ res = 0.

Solving the path condition yields an input (such as x = 1) that
would trigger the execution of the desired target line 7. How-
ever, SBE faces challenges mentioned in section 1: (1) the
modulo operation on line 5 forces state-of-the-art decision
procedures such as the Z3 SMT2 solver [5] to reply unknown
after few traversals of the loop; (2) the Math.sin method on
line 14 is native and may not have an interpretation in the
solver; and (3) the data-dependent loop on line 4 must be
traversed 1024 times to yield res = 8192.

3. APPROACH
Following the general idea of concolic execution, we pro-

pose to overcome the aforementioned drawbacks of symbolic
backward execution by combining it with concrete execution.
Our approach, symbolic–concrete (symcretic) execution, con-
sists of the two phases outlined in this section. A detailed
description and formalization of both phases is available in
the full version of this paper.

Phase I uses SBE to try to find a feasible execution path
from the target statement to an entry point. Specifically,
starting from the target statement, it explores the program’s
control-flow graph backwards and uses an abstract interpreter
to construct the path condition. Branches in the search path,
for example statements with multiple predecessors or call-
sites of virtual methods, are explored depth-first. After each
search step, the algorithm checks the satisfiability of the
current path condition with a symbolic decision procedure.

2Satisfiability Modulo Theories

1 public void simplified challenges(int x, double u) {
2 int res = x + 23;
3 if (res == 8192) {
4 if (Math.sin(u) > 0) {
5 throw new AssertionError();
6 }
7 }
8 }

Figure 2: Program from Figure 1 without the loop.

The search continues if the path condition is satisfiable. It
backtracks if the condition is unsatisfiable. If the decision
procedure cannot answer the query, the algorithm removes
the most recent constraint from the path condition, treating
it as potentially satisfiable and deferring its solution to the
second phase.

Phase I also constructs a trace of the program along the
followed path. At each search step, the algorithm prepends
the trace with the current statement, regardless of whether
it was removed from the path condition or not. For removed
statements, the algorithm furthermore adds a call to the
special change() method that marks the statement’s result
as needing adjustment in the second phase. Because the
search follows a single execution path, if-statements and other
conditionals are not directly added to the trace. Instead, the
algorithm adds a call to the special fit() method that signals
which of the conditional’s branches the search traversed.
Boolean connectives of conditions are encoded in the control-
flow, which implies that all conditions along the path are non-
compound and valid inputs must satisfy their conjunction.
Once the search reaches the beginning of an entry point, the
second phase begins.

Phase II uses heuristic search on the trace to find in-
put values that satisfy constraints that were problematic in
Phase I. Specifically, the algorithm repeatedly evaluates the
program trace on input values, determines how close the
branch conditions in the trace are to being satisfied, and
modifies some of the inputs to move closer to a full solution.
Symcretic execution does not prescribe which heuristic search
algorithm to use; possible choices include genetic algorithms
and the Concolic Walk algorithm [6].

We illustrate our approach on the program in Figure 2.
Assume we select line 5 as target. Using SBE, we obtain
the path condition Math.sin(u) > 0 ∧ res = 8192 ∧ res =
x+23. Unfortunately, our symbolic decision procedure cannot
solve the path condition because it cannot reason about the
native method Math.sin. Symcretic execution therefore skips
the problematic constraint Math.sin(u) > 0, which results in
the satisfiable path condition res = 8192 ∧ res = x + 23
with solution x = 8169. Simultaneously, symcretic execution
creates a trace of the program:

1 void trace1(int x, double u) { // Phase II instructions:
2 int res = x + 23;
3 fit(res, ’==’, 8192); // Find inputs with res == 8192
4 double v = Math.sin(u);
5 change(v); // Adjust inputs that influence v
6 fit(v, ’>’, 0); // Find inputs with v > 0
7 }

The call to the change() method in the trace signals that
the value of v must be found by heuristic search. Phase II
thus begins by executing the trace on the inputs x = 8169 and
u = 0.0—solutions obtained during Phase I. By evaluating
the calls to the fit() method, Phase II determines that the

constraint v > 0 is not yet satisfied. It therefore adjusts one
of the inputs that influence v (here: u) and re-executes the
trace. This process continues until a solution has been found
or the time budget has been exceeded.

Data-Dependent Loops
Another challenge for symbolic execution are data-dependent
loops that require many iterations, such as the loop on line 4
of Figure 1. Triggering the error on line 15 requires x =

1024 iterations of the loop, a number far beyond typical
loop-unrolling bounds. For example, the state-of-the-art
concolic testing tool Pex [21] fails to find the right number of
iterations even with extended exploration limits. To discover
this input, symcretic execution starts from line 15, collects
the required constraints Math.sin(u) > 0 ∧ res = 8192, and
starts unrolling the loop. After a number of traversals, it
exceeds the maximum number of iterations and gives up on
the loop. It therefore treats the loop as though it were a
call to an external loop method whose body is the loop body,
whose parameters are the variables read inside the loop, and
whose return values are the values written inside the loop.
In this way, Phase I jumps over the loop and continues on
line 3. After taking the last two symbolic steps, the trace for
the execution path looks as follows:

1 void trace2(int x, double u) {
2 int res = 0;
3 int i = 0;
4 res, i = extractedLoop(res, i, x); // Wraps lines 4−12 in Fig. 1
5 change(res);
6 change(i);
7 fit(res, ’==’, 8192);
8 double v = Math.sin(u);
9 change(v);

10 fit(v, ’>’, 0);
11 }

The body of the extractedLoop method consists of lines 4 to 12
in Figure 1. The second phase of symcretic execution uses
heuristic search to find inputs that (1) influence res, i, and
v; and (2) satisfy the goal conditions res = 8192 and v > 0.

4. DISCUSSION

Comparison with Concolic Execution
Like concolic execution, symcretic execution is stronger than
symbolic execution because of its ability to mitigate solver
limitations through concrete execution. Unlike concolic ex-
ecution, symcretic execution can avoid exploring irrelevant
paths, for example if the target is unreachable as in the
unreachable method shown in Figure 3. The method con-
tains an error condition that is prevented by a guarding
if-statement. Trying to find inputs that trigger the error, sym-
cretic execution starts its symbolic phase at the error state-
ment in line 9 and begins stepping backwards. It first adds
the constraint y = 1 to the path condition, and next y > 0,
which yields the unsatisfiable path condition y = 1 ∧ y > 0.
This two-step search path is branch-free; the search thus
explored (the first segments of) the only backwards path
towards the method entry. As a consequence, symcretic exe-
cution ends after these two steps with a proof that the error
in line 9 cannot occur.

Concolic execution starts its exploration of the unreachable

method at the top. Once the execution has passed the initial
computation, which can be long and contain many branches,

1 void unreachable(int x1, int x2, int x3 ..., int xn) {
2 int y = 0;
3 if (x1 > 0) { y = y + 1; } else { y = y + 2; }
4 ...
5 if (xn > 0) { y = y + 1; } else { y = y + 2; }
6
7 if (y > 0) {
8 if (y == 0) { // Error condition for, e.g., division−by−zero
9 error();

10 }
11 }
12 }

Figure 3: Program with an unreachable error condi-
tion in line 9. While symcretic execution recognizes
the unreachability after two steps, concolic execu-
tion explores 2n execution paths before giving up.

1 void slicing(int x1, int x2, int x3 ..., int xn) {
2 // None of the blocks uses or defines y
3 if (x1 > 0) { ... } else { ... }
4 ...
5 if (xn > 0) { ... } else { ... }
6
7 int y = 0;
8 if (y == 1) {
9 error();

10 }
11 }

Figure 4: Program for which slicing improves sym-
cretic execution.

it arrives at the if-statement in line 7. Assuming that y

> 0 holds, the execution cannot explore the (unreachable)
branch in the next line, leading to a path condition Φ ∧ y >
0∧ y 6= 0, where Φ describes the path above the if-statement.
If the concolic execution follows the common exploration
strategy [20], it tries to derive the next set of inputs by
inverting the last constraint in the path condition and solving
it. However, the new path condition is unsatisfiable—it
contains both y > 0 and y = 0—leading to backtracking.
As concolic execution cannot recognize the unreachability of
the target statement, this repeats for every constraint in Φ.
Concolic execution therefore explores up to 2|Φ| irrelevant
paths in the method before giving up.

In some cases, guiding concolic execution [7] via data de-
pendencies can reduce the number of paths that are explored
before the search gives up. However, even with this reduction,
the number of explored irrelevant paths can still be large. In
our (admittedly contrived) example, the branch condition in
line 8 that prevents covering the target statement depends
on every block of the preceding if-statements. The guidance
therefore achieves no reduction at all.

Comparison with Backward Slicing
A (backward) slice of a program with respect to a slicing
criterion consists of all the statements in the program upon
which the criterion depends [22]. Slices are therefore similar
to the traces that symcretic execution collects along the
followed execution path. Similar to a dynamic slice, the
trace follows a single execution path. Unlike slicing, the
trace is not fixed by the program inputs, but by the path
condition—which represents the class of all program inputs
for this path at once. A further, more important difference
is that the slice is a partial program, whereas the trace is a

1 void narrow(int x) {
2 int y;
3 if (x >= 0) { y = x; } else { y = −x; } // y = Math.abs(x);
4 if (y < 0) {
5 error(); // Reachable for x = Integer.MIN VALUE
6 }
7 }

Figure 5: Program that is problematic for search-
based software testing, but not for symcretic execu-
tion. The narrow branch condition in line 4 relies
on an artifact of machine arithmetic. The solution
is hard to discover for heuristic search, but not for
symbolic bit-vector solvers.

straight-line sequence of statements in which all control-flow
has been unrolled.

Symcretic execution currently does not slice the program.
However, slicing can accelerate symcretic execution by re-
ducing the number of paths that have to be explored. For
example, when targeting the error statement in line 9 of the
slicing method in Figure 4, slicing removes the n irrelevant
conditionals in the lines 2–5. Having much of the necessary
information for slicing available during symcretic execution,
we plan to integrate it in future work.

Comparison with Search-Based Software Testing
Search-based software testing (SBST) [17] finds test inputs
that meet a coverage criterion by iteratively selecting inputs
that, according to a fitness function, seem closer to a solution.
In contrast to our focus on primitive values, inputs can
vary in granularity, ranging from primitive values to method
sequences for constructing objects. Common heuristics for
finding better inputs are genetic algorithms, as well as the
Alternating Variable Method [14]. The concrete phase of
symcretic execution can be regarded as a special instance of
applying SBST to the program trace.

Heuristic search can be slow in discovering the specific
solutions of narrow branch conditions. For example, the
method narrow in Figure 5 fails if called with the minimal
value for integers because, in two’s complement, the additive
inverse of the smallest integer does not fit into the available
bits. Therefore, it is x = −x, but x 6= 0. This exceptional
behavior for one out of 232 integers (assuming 32-bit) is
problematic for heuristic search because the fitness function
will typically optimize the condition x = −x for the solu-
tion x=0. However, symbolic solvers that support bit-vector
arithmetic know about these special cases and can solve the
conditions directly. Assuming such a solver, the symbolic
phase therefore gives symcretic execution an advantage over
SBST.

5. EVALUATION
We now compare our implementation of symcretic execu-

tion with two other input generators: Symbolic PathFinder
(SPF) [18] and jCUTE [19]. To measure the effectiveness
and efficiency in generating target-specific inputs, we define
target statements for a set of small programs (Table 1) and
count how many search steps each tool takes before either
finding inputs that reach the target, or giving up.

Table 1: Programs used to evaluate symcretic exe-
cution. The LoC column lists the number of source
code lines in the program, excluding comments and
empty lines. The If and L. columns show the num-
ber of if-statements and and loops in the program,
the T. column contains the number of targets.

Program Description LoC If L. T.

hard-loop Figure 1 19 2 1 1
dart Concolic example 16 2 · 2
unreach Figure 3 20 11 · 1
slicing Figure 4 18 10 · 1
narrow Figure 5 14 2 · 1
easy-loop Decrementing loop 15 1 1 1
trityp Triangle classification 49 10 · 3

Experiment Setup
We have implemented symcretic execution of a subset of Java
in a tool called Cilocnoc (concolic backwards). Cilocnoc relies
on WALA [8] to process class files. The symbolic backward
execution engine of Cilocnoc uses Z3 [5] to solve primitive
constraints, and a custom solver for object-shape constraints.
The heuristic phase finds inputs using the Concolic Walk
algorithm [6].

Table 1 lists the programs used in our evaluation. Each
program represents a specific challenge for symbolic and con-
colic execution (see section 4). The dart , easy-loop, and trityp
programs are examples that appear in related work: dart
is close to the standard example for concolic execution [12];
easy-loop is a simple data-dependent loop that was used to
evaluate JAUT [4]; and trityp is the classic highly-branching
program for classifying triangles. The remaining programs
consist of the methods shown in the Figures 1, 3, 4, and 5.
In each program, we arbitrarily place target statements that
we wish to cover.

We generate inputs for every program using the Cilocnoc,
jCUTE, and SPF-CW tools. jCUTE is a classic concolic
test generator that relies on a linear constraint solver. SPF-
CW is a variant of Symbolic PathFinder that solves com-
plex arithmetic path conditions—including calls to external
methods—with the same Concolic Walk algorithm that Ciloc-
noc employs in its concrete phase. jCUTE and SPF-CW both
generate high-coverage test suites for Java programs. Aiming
for high overall coverage, neither tool implements a guiding
heuristic towards a target statement. However, as discussed
in section 4, the data-dependency guidance proposed in prior
work [7] would have little impact on the programs in our
corpus. All tools explore the program depth-first without
depth bound but with a 20 second time limit.

During the input generation, we count the execution path
segments the tool traverses before reaching the target. A
segment is a straight-line sequence of statements between
two branching points in the execution path. We choose this
metric because it depends less on implementation choices
than measuring execution time. Nevertheless, we also report
the run times (in seconds) to give some intuition of the
usefulness of the tools to programmers. The times exclude the
duration of static setup tasks because the values generated
by these tasks could (and should) be cached. For jCUTE, the
static setup consists of instrumenting the target program’s
byte code; this adds about 1 second to the processing time
of each program. For Cilocnoc, the static setup consists of

loading and indexing the JDK class hierarchy, which takes
about 1.4 seconds per program on an Intel Core i7 notebook
with 2 GB of RAM.

Results: Is Symcretic Execution Effective?
Cilocnoc finds inputs for all reachable targets, which suggests
that symcretic execution is effective in finding branch-specific
inputs. In contrast, the inputs generated by jCUTE reach
just one of three targets in the trityp program and the single
target in the easy-loop program; the other eight targets in
the program corpus remain uncovered. The SPF-CW tool
performs slightly better: it additionally covers both targets
in the dart program.

Benefiting from a strong symbolic solver, Cilocnoc uses
concrete execution for only three targets: those in the easy-
loop and hard-loop programs, and the second target in the
dart program, which contains an external method call. The
target in the narrow program can be covered because the
symbolic solver knows about bit-vector arithmetic and the
irregularity of negating the smallest integer.

Results: How Efficient is Symcretic Execution?
The results of our experiments support the hypothesis that
symcretic execution is more efficient than concolic and sym-
bolic execution. For all targets, except one case in trityp,
Cilocnoc explores fewer path segments than its competitors
and, at the same time, discovers all desired inputs. On
the unreach program, Cilocnoc benefits from being able to
recognize unreachable branches as discussed in section 4:
instead of exceeding the time limit, exploring 1,287 (jCUTE)
or 766 segments (SPF-CW), it stops after just 0.4 seconds,
or one segment. Furthermore, the extraction of loops con-
siderably shortens the explored path on the easy-loop and
hard-loop programs: whereas jCUTE and SPF-CW descend
deeply into the respective loops (6,600 and 6,162 for jCUTE,
1,912 and 5,516 segments for SPF-CW), Cilocnoc delegates
the loop traversal to the concrete phase after just 7 and 30
segments, which quickly finds a solution.

The results also show that pure symbolic execution has
an exploration advantage over concolic execution. Unlike
jCUTE, both SPF-CW and Cilocnoc (in the symbolic phase)
support backtracking the search state. When a search path
becomes infeasible before having reached the target, they
can revert the changes of the last branch before descending
into another branch of the search tree. In contrast, jCUTE
has to re-execute the entire program starting from the be-
ginning. Both SPF-CW and Cilocnoc can therefore explore
paths much faster than jCUTE. For example, on the slic-
ing program, jCUTE is more than twenty-fold slower than
Cilocnoc.

6. RELATED WORK
Backward execution is a common technique in data-flow

analysis. Building on the IFDS data-flow framework, Chan-
dra et al. [3] develop a backward analysis called Snugglebug
that symbolically computes the weakest precondition of a tar-
get statement at a program entry point. Snugglebug’s focus
is shrinking the search space by lazily constructing the call
graph. Snugglebug and our approach complement each other:
using Snugglebug’s search space reduction would accelerate
Cilocnoc, while symcretic execution would allow Snuggle-
bug to handle complicated arithmetic constraints, external
method calls, and long data-dependent loops. Manevich et

al. [16] use backward analysis based on IFDS to find types-
tate violations. However, the approach is limited to pointer
operations and cannot reason about arithmetic constraints.

Constraint logic programming (CLP) supports the major
components of symbolic execution: inference with backtrack-
ing, symbolic reasoning over numerical values, and symbolic
reasoning over data structures (terms). Building on this sup-
port, Gómez-Zamalloa et al. show how to obtain a test-case
generator for bytecode programs by compiling the bytecode
to CLP rules [13]. However, it is unclear how to extend the
approach for handling native code or complicated non-linear
arithmetic.

Backward analysis is also the foundation for some heuris-
tics that guide symbolic forward-execution towards a target
statement. Similarly to backward slicing [22], Zamfir and
Candea [24] compute which control flow edges must be passed
to reach the target. Among the paths containing these edges,
they prioritize the paths with the lowest estimated number
of operations. Ma et al. [15] propose a search heuristic that
follows the call-chain backwards from the target method.
However, inside each method, it uses forward search to find
the call site. Do et al. [7] use the chaining approach to guide
concolic execution towards uncovered code elements. The
chaining approach chooses different inputs for a branch’s re-
verse dependencies when it must take the branch but cannot
solve it.

7. CONCLUSIONS
Program inputs that cover a specific target are useful in

debugging and regression testing. Symcretic execution com-
bines symbolic backward execution and concrete forward
execution to efficiently find targeted inputs even if a program
contains complicated arithmetic, external method calls, or
data-dependent loops. An experimental evaluation shows
that symcretic execution finds inputs in more relevant cases
than concolic testing tools while exploring fewer path seg-
ments.

In future work, we plan to accelerate the search for poten-
tially feasible paths by integrating heuristics that steer the
search towards entry points, by supporting conflict-driven
back-jumping, and by lazily expanding called methods. Fur-
thermore, we plan to complete the support for objects, and
add support for arrays and static fields to the Cilocnoc tool.

8. ACKNOWLEDGMENTS
This publication was made possible in part by sponsorship

from the Army Research Office under award W911NF-09-
1-0273, and from the Air Force Research Laboratory and
the Air Force Office of Scientific Research under agreement
FA8750-11-2-0084. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The first
author was also supported by a fellowship from the Graduate
College at the University of Illinois at Urbana–Champaign.

9. REFERENCES
[1] C. Andersson and P. Runeson. A replicated

quantitative analysis of fault distributions in complex
software systems. IEEE Trans. Softw. Eng., 33(5),
2007.

[2] R. S. Boyer, B. Elspas, and K. N. Levitt. Select—a
formal system for testing and debugging programs by
symbolic execution. SIGPLAN Not., 10(6), Apr. 1975.

[3] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug:
a powerful approach to weakest preconditions. In PLDI,
2009.

[4] F. Charreteur and A. Gotlieb. Constraint-based test
input generation for java bytecode. In ISSRE, 2010.

[5] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, 2008.

[6] P. Dinges and G. Agha. Solving complex path
conditions through heuristic search on induced
polytopes. In SIGSOFT FSE, 2014.

[7] T. Do, A. C. M. Fong, and R. Pears. Precise guidance
to dynamic test generation. In ENASE, 2012.

[8] J. Dolby, S. J. Fink, and M. Sridharan. T. J. Watson
libraries for analysis (WALA). http://wala.sf.net.

[9] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Trans. Softw. Eng., 26(8), 2000.

[10] G. Fraser and A. Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In SIGSOFT
FSE 2011. ACM, 2011.

[11] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test generation
really help software testers? In M. Pezzè and
M. Harman, editors, ISSTA. ACM, 2013.

[12] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI, 2005.

[13] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test
case generation for object-oriented imperative
languages in clp. TPLP, 10(4-6), 2010.

[14] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8), 1990.

[15] K.-K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks.
Directed symbolic execution. In SAS, 2011.

[16] R. Manevich, M. Sridharan, S. Adams, M. Das, and
Z. Yang. PSE: explaining program failures via
postmortem static analysis. In SIGSOFT FSE, 2004.

[17] P. McMinn. Search-based software test data generation:
a survey. Softw. Test., Verif. Reliab., 14(2), 2004.

[18] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder:
symbolic execution of java bytecode. In ASE 2010.
ACM, 2010.

[19] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools. In CAV
2006, volume 4144 of LNCS. Springer, 2006.

[20] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In SIGSOFT FSE, 2005.

[21] N. Tillmann and J. de Halleux. Pex-white box test
generation for .NET. In TAP 2008, volume 4966 of
LNCS. Springer, 2008.

[22] F. Tip. A survey of program slicing techniques. J. Prog.
Lang., 3(3), 1995.

[23] Z. Xu and G. Rothermel. Directed test suite
augmentation. In S. Sulaiman and N. M. M. Noor,
editors, APSEC. IEEE Computer Society, 2009.

[24] C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debugging. In
EuroSys, 2010.

http://wala.sf.net

	Introduction
	Motivation
	Approach
	Discussion
	Evaluation
	Related Work
	Conclusions
	Acknowledgments
	References

