
Cauldron: A Framework to
Defend Against Cache-based

Side-channel Attacks in Clouds

Mohammad Ahmad, Read Sprabery, Konstantin Evchenko, Abhilash Raj,

Dr. Rakesh Bobba, Dr. Sibin Mohan, Dr. Roy Campbell

1

Introduction to Containers
• Lightweight VM

• Own process, network space

• Can install own packages

• How are they different from a VM?

• Containers share the host kernel

• Multiple implementations available

• Docker, rkt, LXC

2

Hardware

Host OS

Container Container

Building blocks of
containers

• Linux Control Groups (cgroups)

• Resource limiting & accounting

• CPU, memory, block I/O, network

• Namespaces

• Limit what a container can see

• Process, network, mount, uts, ipc, user

3

Container Usage
• Platform as a Service Clouds (PaaS)

• Openshift, DotCloud, Heroku

• Customers upload source code and executables

• Multi-tenant environment

• Containers often used for isolation

4

Problem Statement

• Cross container side-channel attacks on public
clouds

• Cauldron aims to defend against such attacks

5

Motivation

• Defense against such attacks could prove to be a
win-win for both

• Cloud providers: Increase cloud adoption

• Users: Reduced costs

• Private clouds with multiple security levels

6

Threat model

7

Hardware

Host OS

Container Container

Victim Adversary

Cache Hierarchy

8

Shared L3 Cache

L1
Cache

L2
Cache

Core 0

L1
Cache

L2
Cache

Core 1

L1
Cache

L2
Cache

Core 2

L1
Cache

L2
Cache

Core 3

Processor 0

Flush+Reload attack
• Leverages shared libraries/binaries with the victim

• Step 1: Flush

• Specific chunks containing instructions in the
memory page shared with the victim are flushed

• Step 2: Wait…

• Step 3: Reload

• Adversary times the reload of the same chunks

9

Prime+Probe Attack
• Follows similar steps as Flush+Reload

• Does not rely on shared libraries

• Added burden on attacker to identify `interesting`
sets

• Can be launched from across cores or the same
core

Goals for Cauldron

1. Protect against same-core and cross-core side-
channel attacks

2. Not require any changes to user applications

3. Easy to deploy and adopt

4. Incur reasonable performance overheads

11

Intel Cache Allocation
Technology (CAT)

• Partition the last level cache (LLC) between cores

• Protects against cross-core Prime+Probe attacks

• Limitations

• Four partitions supported

• Vulnerable to same-core side-channel attacks &
Flush+Reload

12

Cache Flushing without
Partitioning

• Flush the cache on each context switch

• High cache flushing overhead

• Limitation

• Vulnerable to LLC based cross-core side-
channel attacks

13

Cauldron Architecture

14

Cauldron
• Each protected region consists of

• One core & partitioned LLC

• Cache flush between context switches between
different clients in each protected region

• Only flush LLC partition allocated to the protected
region

15

Cauldron: Gang Scheduling

• Hyperthreading disabled

• Gang schedule tasks belonging to the same client
on the logical cores that map to the same physical
core

• Increase the number of cores available in the
protected regions

Cauldron: Implementation
• Userspace utility to configure cache partitions

• Client differentiation using cgroups

• Scheduler

• Loadable kernel module

• Return probes (kretprobes)

• Plug into the Linux scheduler routine

17

Security Evaluation

• Intel Xeon E5-2618 v3

• 8 physical cores

• Victim application: GnuPG 1.4.13

Flush+Reload

Flush+Reload cont'd

Prime+Probe

0"

20"

40"

60"

80"

100"

120"

0" 50" 100" 150" 200" 250"

Av
g.
%N
um

be
r%o

f%p
a0

er
ns
%m

at
ch
ed

%

Cache%Set%

A0acker%and%Vic<m%Sharing%the%Same%Cache%Par<<on%

Prime+Probe cont’d

0"

20"

40"

60"

80"

100"

120"

0" 50" 100" 150" 200" 250"

Av
g.
%N
um

be
r%o

f%p
a0

er
ns
%m

at
ch
ed

%

Cache%Set%

A0acker%and%Vic<m%Running%in%Different%Cache%Par<<ons%

Performance Evaluation

23

Ferdman, Michael, et al. "Clearing the clouds: a study of emerging scale-out
workloads on modern hardware."

Research Challenges

• Scheduler optimizations

• Detection of malicious containers

• Selective sharing of libraries

• Container placement

24

Conclusion
Goals for Cauldron

1. Protect against same-core and cross-core side-
channel attacks

2. Not require any changes to user applications

3. Easy to deploy and adopt

4. Incur reasonable performance overheads

